Полное меню
ВП максимальных расходов и уровней воды в зависимости от класса ответственности сооружений
Эти предложения и рекомендации вошли в первую редакцию перерабатываемого СНиП 2.05.03-84*, были рассмотрены ЦНИИС, Гипротрансмостом, МИИТ, МАДИ (ГТУ), Союздорнии и рядом других организаций и включены во вторую редакцию этого документа. В её составе были также отражены проработки по нормированию критериев ВП для автодорожных совмещенных мостов, а также для временных, вспомогательных и периодически затопляемых дорожно-мостовых сооружений. Следует считать, что данные критерии ВП распространяются на наплавные мосты. Обобщение зарубежного и отечественного опыта проектирования и эксплуатации позволило сформулировать цели, которые должны отражаться в критериях проектирования, и устанавливать специальные требования, которые обеспечивают эффективность применения и надежное функционирование наплавных мостов. Основные устанавливаемые требования должны обеспечивать срок службы наплавных мостов - 75 - 100 лет с низкими эксплуатационными расходами, надежное функционирование, безопасность и комфортность проезда в обычных (регулярных) условиях эксплуатации; устойчивость при повреждениях от катастрофических нагрузок и экстремальных гидрометеорологических воздействий; а также в случае отдельного повреждения не должны быть подвержены эффекту прогрессирующего разрушения. Проектирование конструкций наплавных мостов ведется на нагрузки и их сочетания, регламентированные СНиП 2.05.03-84*. Однако наплавные мосты представляют собой пространственную комбинацию элементов, отличающихся от высоководного моста тем, что, кроме регламентированных нагрузок, есть еще и другие дополнительные факторы, имеющие гидрометеорологическую природу, влияющие на надежное функционирование всего сооружения: амплитуда колебания уровней воды; течение воды; ветровые и волновые воздействия; приливно-отливные явления и ледовые воздействия (в зависимости от места расположения). Таким образом, работоспособность наплавных мостов очень чувствительна к воздействию гидрометеорологических факторов. Очевидно, что при проектировании оценка степени их воздействия должна быть подвержена детальному анализу. При расчете отверстия мостового перехода с наплавной частью применяются те же методы, что и для мостов на капитальных опорах. Живое сечение считается стесненным погруженной частью плавучих опор. Устройство наплавного моста может оказать влияние на распределение скоростей в поперечном сечении потока и движение наносов. В отдельных случаях, например при близком расположении плавучих опор, малой глубине, возможно образование подпора. Работоспособность наплавного моста обеспечивается при колебании уровня воды в реке (озере, море) в определенном диапазоне. При самых высоких уровнях воды возможно затопление подъездов, или в сопрягающей части получаются значительные (недопустимые) продольные уклоны ездового полотна, препятствующие движению транспортных средств. Основное отличие наплавных мостов от мостов на постоянных опорах заключается в том, что уклоны ездового полотна имеют переменное значение и напрямую зависят от двух факторов: величины и расположения временной нагрузки (в плавучей части); уровня воды в данный момент (в плавучей и сопрягающей частях). Проблема определения амплитуды колебания уровней воды является центральной в обосновании надежного функционирования наплавного моста. От величины этой амплитуды зависят высота моста, длина подходной и сопрягающей частей, отметки бровки земляного полотна у подходной части, длительность и бесперебойность функционирования моста. Однако решению этой проблемы не придавалось серьезного научного значения. Анализ действующих норм и рекомендаций показал, что в них отсутствуют требования к установлению расчетной амплитуды колебания уровней воды и не регламентированы методы определения расчетных уровней воды. Поэтому введем новое понятие - расчетная амплитуда колебания уровней воды (А). За А будем принимать разницу между расчетным (максимальным) уровнем высоких вод (РУВВ) и расчетным (минимальным) уровнем низких вод (рис. 16). При поднятии уровня воды выше расчетного уровня высокой воды (РУВВ) или опускании ниже расчетного уровня низкой воды (РУНВ) нормальная работа наплавного моста прекращается. Таким образом, устанавливаются граничные условия функционирования моста. Рис. 16. Схема для определения расчетной амплитуды колебания уровней воды: А -расчетная амплитуда колебания уровня воды в реке; б - наибольшая осадка точки опирания мостика на береговом звене от временной нагрузки; h - высота настила въездов над РУВВ (или над наивысшим уровнем принятой расчетной амплитуды); Н - высота настила плавучей части над уровнем воды при постоянной нагрузке; i0 - уклон сопрягающей части при РУВВ и отсутствии временной нагрузки; iн - уклон при РУНВ при наличии временной нагрузки на мосту; L - длина сопрягающей части Длительность надежной работы наплавного моста напрямую связана с выбранными РУВВ и РУНВ и зависит от продолжительности перерывов. Перерывы носят стихийный характер и могут привести к дезорганизации работы непосредственно наплавного моста и, соответственно, действующей транспортной сети. Рассмотрим понятие перерывы в работе наплавного моста более подробно. Перерывы могут быть ожидаемые и незапланированные. Ожидаемые перерывы соотнесены с периодом прохождения весеннего и осеннего ледоходов, если предусматривается разводка моста. Эти перерывы поддаются прогнозу, поскольку наступают ежегодно в определенное время, и их можно планировать заранее. Незапланированные перерывы наступают внезапно вследствие значительного подъема или спада уровней воды, которые не учитывались при выборе и обосновании РУВВ и РУНВ. Такие перерывы могут нанести значительный материальный ущерб из-за простоя транспортных средств. Учитывая изложенное, вывод очевиден. Выбор расчетных уровней воды, обеспечивающих надежное функционирование наплавного моста, должен производиться на основе технико-экономического сравнения вариантов. Наиболее целесообразным будет функционирование наплавного моста без перерывов или с небольшими перерывами, последствия от которых несущественны и легко преодолимы. Из практики проектирования известно, что расчетные уровни воды для обоснования функционирования наплавного моста определяли аналогично методу определения расчетного судоходного уровня воды для мостов. Однако найденные таким методом расчетные уровни воды являются только первым приближением. Основу расчетов составляют графики годового хода уровней воды за многолетний период (рис. 17). Этот метод не требует установления ВП и ориентирован только на допустимую величину возможного перерыва функционирования. В то время как современные нормативные требования устанавливают необходимость придерживаться заданной вероятности превышения, соотнесенной со степенью ответственности сооружения (см. табл. 4 и 5). Месяцы Рис. 17. График годового хода уровней воды В инструкции ВСН 136-78 [34] сделана попытка регламентировать требование к определению уровня воды в период перевозки пролетных строений (применительно к проектированию плавучих опор), который рекомендуется принимать вероятностью повышения и понижения 10 %. Здесь значение ВП в какой-то мере соотнесено с тем, что плавучие опоры являются временным сооружением и срок надежного функционирования ограничен. Но при этом не оговорены требования к определению исходно-расчетных характеристик (уровней). Исследованиями характера эмпирических кривых распределения вероятностей превышения уровней по ряду рек с различными условиями формирования и проявления их внутригодового речного стока установлена необходимость индивидуального подхода к аппроксимации этих кривых в виде графоаналитических или графических зависимостей. Также рядом исследований установлена возможность применения параболических кривых и кривых нормального распределения ВП для установления величин гидрологических характеристик редкой повторяемости [35, 36]. Эти кривые достаточно полно соответствуют эмпирическим точкам годовых максимумов и характеру асимметричности эмпирических распределений. Установление характеристик годовых минимумов (РУНВ) применительно к наплавным мостам является основной задачей. Исследования этой направленности не проводились. Поэтому здесь сформулируем основные отправные моменты. При строительном проектировании используются низкие гидрологические характеристики в интервале обеспеченности от 75 до 99 %. Обычно для различных целей водохозяйственного проектирования в этом диапазоне определяются расчетные уровни меженных вод. Предварительно можно рекомендовать для определения наибольшей разности уровней воды, ожидаемой за период эксплуатации наплавного моста, например отнесенного ко 2 классу ответственности, принимать ежегодную ВП уровней воды для основного расчетного случая 0,5 и 99,5 %. Учитывая предварительный характер рекомендаций, выбор критериев ВП требует подтверждения технико-экономическими расчетами и пробного проектирования. Быстрое течение воды требует решения двух крайне серьезных проблем. Первая проблема - надежность закрепления моста, которая определяется гидродинамическим сопротивлением потоку. Вторая - устойчивость моста в набегающем потоке, т.е. сохранение плавучести при взаимодействии моста с водным потоком. Вопросы учета гидродинамического воздействия водного потока достаточно хорошо исследованы [29]. Применительно к мостам-лентам типа ПМП графическая зависимость гидродинамического сопротивления от ширины ленты и грузоподъемности моста, а также расстояния между грузами для разных значений скорости течения и глубины воды приведены в работе [25]. Причем зависимости относятся к наплавным мостам, как оборудованным гидрощитами, так и без них. Надежность закрепления наплавного моста на течении определяется расчетом прочности моста на действие вертикальной нагрузки и горизонтальной нагрузки от ветрового воздействия скоростного напора потока. В работе [25] приведены графические зависимости для определения допустимых расстояний между точками закрепления мостов-лент типа ПМП. Приведенные в этой работе графические зависимости позволяют также определить допустимую длину мостов-лент с креплением береговых концов оттяжками в зависимости от гидродинамической и вертикальной нагрузки. Кроме того, даны рекомендации по выбору схем закрепления мостов оттяжками при равномерном и неравномерном течении реки, а также при значительной несимметричности положения стрежня потока относительно берегов. Другая не менее важная проблема - устойчивость наплавных мостов при быстром течении. В работе [25] приведен пример взаимодействия наплавного моста через р. Катунь при скорости течения водного потока 6,5 м/с. Вначале поток подтапливал мост и переливался через него. После чего мост всплывал, и перед ним образовывался подпор. По мере роста подпора мост вновь затапливался приблизительно на длину, равную 1/3 ширины реки. Береговые участки моста, работающие на кручение, удерживали его от полного затопления. Вопросы устойчивости мостов-лент типа ПМП достаточно исследованы. Исходя из расчетной нагрузки и дистанции между нагрузками по графическим зависимостям, приведенным в работе [25], можно определить предельно допустимые скорости течения воды для этого типа мостов при неблагоприятной глубине воды 4 м, учитывая ширину моста (в диапазоне от 4 до 16 м). Причем зависимости относятся к мостам как с гидродинамическими щитами, так и без них. Кроме того, шкала предельно допустимых скоростей течения воды отражает скорости по живому сечению русла равнинных рек, поверхностную скорость течения воды, скорость течения воды горных рек. Ветровые и волновые воздействия являются, как правило, определяющими при выборе основных параметров конструкции наплавного моста. Волновая нагрузка функционально зависит от скорости ветра, его направления и продолжительности, длины разгона, конфигурации береговой линии водной преграды и глубины воды. В свете современных представлений о безопасности инженерных сооружений при проектировании необходимо рассматривать обычные и экстремальные условия эксплуатации. В соответствии с Рекомендациями [23] экстремальные штормовые условия рекомендовано для ветровых и волновых воздействий принимать с обеспеченностью 1 %. Здесь же обратим внимание, что вопросы сочетания нагрузок в условиях их экстремального проявления мало исследованы, не имеют однозначного решения и единого методологического подхода. Тем не менее, следует признать обоснованными рекомендации [23] о том, что в сочетаниях с экстремальными волновыми нагрузками временная нагрузка (нагрузка от транспортных средств) не учитывается. В обычных мостовых сооружениях на постоянных опорах волновая нагрузка играет второстепенную роль. В таких же конструкциях, как наплавные мосты, влияние волн на прочность и надежность велико. Большая протяженность, неблагоприятные динамические свойства, а также форма поперечного сечения понтонов делают эти типы мостов весьма чувствительными к действию приливно-отливных явлений, волновых нагрузок, причем высота, период и направление движения волны также имеют значение. В отличие от мостов на капитальных опорах наплавные мосты подвержены явлению раскачивания в большей степени. Наплавной мост после проезда грузового автомобиля продолжительное время совершает медленные колебания. При проходе последующих автомобилей во время опускания звена происходит увеличение раскачивания. Учитывая, что собственные периоды колебаний наплавных мостов могут быть соизмеримы с периодами прохождения нагрузок, динамический расчет приобретает определяющее значение. Таким образом, комплекс инженерных расчетов при проектировании наплавных мостов устанавливает необходимость обязательного выполнения динамических расчетов. Теоретические основы динамических расчетов, в том числе с использованием метода конечных элементов применительно к наплавным мостам, рассмотрены в работах [23, 37, 38]. В течение срока службы моста возможно проявление особых, исключительных условий (нестандартных ситуаций). Надежное функционирование наплавного моста обеспечивается анализом потенциальной возможности повреждения конструкций моста. Потенциальные повреждения могут произойти в результате навала маломерных судов, ударов карчей или плывущих предметов, затопления понтонов, обрыва анкерных устройств. Также, применительно к наплавным мостам, отклонения от нормальной работы могут вызвать: вывод одного понтона или потерю его плавучести; независимое от нагрузки изменение уровня воды по отношению к понтонам за счет волнового воздействия (не сопровождаемое всплытием понтона); экстремальные паводочные воздействия. Анализ и расчеты, обосновывающие безопасное функционирование наплавных мостов, производят применительно только к одному из видов повреждений или ситуаций (т.е. одновременный учет разнородных ситуаций не предусматривается). Безопасное функционирование моста в пределах заданного срока службы обеспечивается также анализом возможности его прогрессирующего разрушения (проявление эффекта «домино»). Одной из версий разрушения наплавного моста через канал Hood в США явилось проявление именно эффекта «домино» после разрушения одного из элементов моста. Исследование работы моста в условиях проявившегося повреждения и затопления плавучей части выявит эффективность принятых конструктивных решений. В конструктивном плане понтон должен быть разделен на водонепроницаемые отсеки. В современной практике рекомендуется устанавливать специальное оборудование для слежения, имеющее сенсоры, фиксирующие попадание воды в отсеки и дающие сигнал предупреждения. Это позволяет эксплуатационным службам своевременно принимать меры по устранению появляющихся повреждений. Ветровое воздействие на наплавной мост необходимо рассматривать применительно к двум случаям: перпендикулярно мосту; под углом к мосту. При косом воздействии ветра в дополнение к составляющей, перпендикулярной мосту, необходимо учитывать силу воздействия ветра на надводную часть понтонов, направленную вдоль моста. Отметим, что усилия при воздействии косого ветра возрастают к концам моста. Между тем, если косое воздействие ветра прикладывается ко всему мосту (сразу ко всем звеньям), то перегрузки понтонов не возникает. При проектировании также следует устанавливать предельные уровни гидрометеорологических воздействий, при превышении которых эксплуатация моста может быть прекращена. Например, для типичных конструкций наплавных мостов такими пределами могут служить высота волны более 1,2 м и ветер со скоростью свыше 15 м/с. Тем не менее, по мнению авторов обзора, установление пределов уровней гидрометеорологических воздействий по условиям эксплуатации или производства работ не следует понимать однозначно. При разработке проектной документации необходимо не просто устанавливать ограничения, а предусматривать специальные мероприятия на случай возможного проявления экстремального воздействия с оценкой степени риска превышения принятого предела. Кроме того, представляется целесообразным выполнять прогноз возможного проявления гидрометеорологических факторов в период производства строительных работ и предполагаемого срока службы мостового сооружения. Ледово-термические явления и процессы на реках являются неотъемлемой частью речного гидрологического режима с его внутригодовыми и многолетними проявлениями. В той или иной мере они распространены почти на всей территории России. Во внутригодовом режиме они проявляются в осенне-зимний и весенний периоды в виде шугохода, осеннего и весеннего ледохода, осенне-зимнего речного стока, ледостава, промерзания водной поверхности, внутриводного льда (донного, наледного и другого), зажоров и заторов льда, подвижек ледяного покрова, припаев льда, наледно-мерзлотных и других явлений. Расчетные характеристики этих процессов и явлений предопределяют необходимость вариантных проработок основных вопросов по конструктивно-планировочным решениям, срокам и продолжительности функционирования наплавных мостов (в случае их разборки на период ледохода), а также по выбору наиболее целесообразного периода года по производству строительных работ. Анализ действующих нормативно-методических документов, направленных на проектирование и строительство мостов, организацию строительного производства, учет нагрузок и воздействий [28, 34, 39, 40, 41, 42, 43] показывает, что в них, кроме требований к учету ледовых нагрузок и воздействий и методов их расчета, отсутствуют какие-либо рекомендации по определению исходно-расчетных характеристик этих воздействий. В Строительных нормах и правилах, обуславливающих методы определения гидрологических характеристик [44, 45], геофизику опасных природных воздействий [46], строительную климатологию [39], инженерно-гидрометеорологические изыскания для строительства [47], не рассматриваются состав и методы расчетов ледово-термических характеристик, а сами процессы и явления, предопределяющие эти характеристики, не отнесены к нормируемым категориям и разновидностям опасных процессов. Не останавливаясь на дальнейшей критике действующих нормативных и рекомендательных документов, укажем, что на основе изучения и обобщения особенностей проявления расчетных характеристик ледово-термических процессов и явлений в осенне-зимний и весенний периоды применительно к специфике наплавных мостов можно рекомендовать их требуемый состав. В этом составе требуемых расчетных ледово-термических характеристик, условий их формирования и проявления в осенне-зимний и весенний периоды в части сроков начала и окончания, продолжительности, уровенного и ледового режима и других сопряженных с ними гидрологических характеристик подлежат расчетам и обоснованиям следующие из них: - максимальные и минимальные годовые расходы и уровни воды этого периода требуемой нормативной ВП и соответствующие им глубины и скорости течения воды; - продолжительность периода, свободного ото льда, уровни и даты появления ледовых образований (начало осеннего ледохода, ледостава, весеннего ледохода, очищения ото льда); - период возможного прохождения осеннего ледохода, образования шуги и заберегов; размеры и траектории плывущих льдин и их максимальная толщина, отметки уровней ледохода; - даты начала и окончания ледостава, сведения о характере и уровне ледостава, максимальная и минимальная ежегодная за зимний период толщина льда нормативной ВП, относительная с учетом влияния снега и приведенная толщина ледяного покрова, количественные характеристики изменения во времени толщины льда и его структуры (игольчатой, рыхлой, раковистой, прозрачной, мутной); - уровни высокого и низкого весеннего (зимнего) ледохода и карчехода, даты начала и окончания, размеры льдин и карча, их траектории движения, продолжительность и интенсивность, скорости течения и глубины воды, влияние ветровых воздействий и нагонов, а также некоторые другие характеристики. Основные характеристики ледовых процессов и явлений рассмотрены в работе [48]. Одним из основных требований по определению расчетных ледово-термических характеристик следует считать обоснование выбора и назначения критериев ВП по заблаговременному учету степени опасности проявления этих характеристик. Основные положения и рекомендации по обоснованию этих критериев ВП, приведенные ранее, применимы также и к ледово-термическим характеристикам. Следует отметить, что методы определения максимальных расходов и уровней воды по многолетним рядам наблюдений получили свое достаточно полное освещение трудами ряда ученых (Д.Л. Соколовского, С.Н. Крицкого, М.Ф. Менкеля, Е.В. Болдакова, Е.Г. Блохинова, Б.Ф. Перевозникова, Л.Ф. Сотниковой и другими) и регламентированы СНиП 2.01.14-83 [44]. Применительно к расчетным гидрологическим характеристикам ледового режима рек такие исследования ранее не проводились, а методы определения этих характеристик по многолетним рядам наблюдений не нормированы. На основании исследований по обоснованию выбора расчетных кривых распределения ВП требуемых характеристик ледового режима рек ниже сформулированы основные принципы. Наиболее репрезентативные расчетные ледово-термические характеристики могут быть получены на водомерных постах и метеостанциях, расположенных в непосредственной близости от створа строящегося объекта. При этом к анализу должны привлекаться все исходные данные независимо от продолжительности наблюдений. Особое значение для определения расчетных ледово-термических характеристик имеют результаты краткосрочных полевых обследований и опросы местных жителей, которые позволяют получать важную исходную информацию, трансформируемую вероятностными и интерполируемыми методами в расчетные характеристики. Наблюдения на отдаленных водпостах отражают менее репрезентативные данные, которые подлежат тщательному анализу их возможностей по отражению пространственно-временных изменений расчетных ледово-термических характеристик вдоль реки. Они могут быть использованы для установления года проявления особо редких явлений и процессов и их ВП, высоких уровней и расходов воды весенних половодий, но не таких характеристик, как толщина льда, УВЛ, размеры льдин, условия заторообразования и некоторых других, имеющих особенности специфических местных проявлений. Данные отдаленных водпостов и водпостов, расположенных на смежных реках целесообразно использовать для определения дат начала и окончания проявления расчетных характеристик на основе обработки данных их многолетних наблюдений и использования метода географической интерполяции. Эти данные, как и данные близлежащих водпостов, рекомендуется корректировать официальными прогнозами Роскомгидромета, его местных управлений и прогнозами МЧС. Анализ многолетней практики проектирования позволяет установить, что вероятностные методы определения РУВВ, толщин льда и других характеристик должны основываться на построении и анализе эмпирических кривых распределения ВП этих характеристик с использованием формулы [44]
где m - порядковый номер исследуемой характеристики; п - общее количество членов ряда этих характеристик. Использование этой формулы, в отличие от всех других известных формул, не вызывает искусственного приближения первых точек исследуемого ряда наблюдений к редким ВП. С её помощью может быть также определена ВП исследуемой гидрологической характеристики, установленной по опросам местных жителей или следам (меткам) от прошедших в прежние годы карчехода, ледохода или их заторов. Признаки и методы определения этих характеристик более подробно рассматриваются в работах ряда авторов [49, 50]. Величины гидрологических характеристик требуемой ВП (Xр), исследуемых такими способами их определения, могут быть получены с применением формулы:
где Он - ордината кривой распределения ВП, соответствующая ВП наблюденной (зафиксированной) величины характеристики (Хн); Ор - той же кривой требуемой ВП. В качестве расчетной величины Xр могут рассматриваться УВЛ и другие ледово-термические характеристики. При определении Он и Ор рекомендуется использование диапазона ординат индивидуальных или нормативных кривых, аппроксимируемых эмпирические распределения ВП исследуемых характеристик Хн с учетом признаков, характера и параметров асимметричности этих распределений. При наличии на реках водомерных постов с длительными рядами измерений годовых максимумов гидрологических характеристик расчетные их величины принято определять по графическим или аналитическим кривым распределения вероятностей превышения этих характеристик, основанным на анализе характера асимметричности и параметров соответствующих эмпирических распределений. Исследование особенностей характера эмпирических кривых распределения вероятностей превышения основных гидрологических характеристик осенне-зимнего и весеннего периодов по ряду рек с различными условиями формирования и проявления их внутригодового речного стока (p.p. Дона, Костромы, Вятки, Суры, Сакмары, Мологи, Хопра, Буреи, Кубани, Оки, Белой, Уфы, Тобола и других) выявило, что эмпирические кривые ВП по характерным признакам асимметричности подразделяются на три типа кривых: со слабо выраженной асимметрией; нормального распределения или близкого к нормальному распределению; с положительной асимметрией. Этому исследованию подлежали наибольшие годовые уровни начала весеннего ледохода (УНВЛ), уровни весеннего ледохода (УВЛ), уровни очищения рек ото льда (УООЛ), уровни начала осеннего ледохода (УНВЛ), уровни начала ледостава (УНЛ), продолжительность периода, свободного ото льда, максимальная в зимний период толщина льда (hл). Выявленные особенности характера исследуемых эмпирических кривых распределения ВП обуславливают необходимость индивидуального подхода к их аппроксимации в виде расчетно-прогнозных аналитических, графоаналитических или графических зависимостей. Возможность применения параболических кривых и кривых нормального распределения ВП изучаемых гидрологических характеристик проиллюстрирована на примере применительно к характеристике - продолжительность периода, свободного ото льда, - имеющей отношение к обоснованию периода функционирования наплавного моста или периоду, целесообразному для наведения моста (рис. 18). Эти кривые достаточно полно соответствуют эмпирическим точкам годовых максимумов и характеру асимметричности всех трех типов исследуемых эмпирических распределений. Они восполняют пробел в нормативных рекомендациях СНиП 2.01.14-83, не предусматривающих расчеты исследуемых гидрологических характеристик, и не исключают дальнейших исследований по анализу эмпирических кривых распределения ВП этих и других гидрологических характеристик внутригодового режима рек и по обоснованию соответствующих расчетных кривых. Однако опять же обратим внимание, что в зоне низких вероятностей характер эмпирических кривых распределения ВП не исследован и возможность аппроксимации не установлена. Рис. 18. Характерные кривые распределения ВП продолжительности периода, свободного ото льда (р. Иртыш, г. Ханты-Мансийск, 1931-1999 гг.) 4. УЧЕТ ОСОБЕННОСТЕЙ ОРГАНИЗАЦИИ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИОсобенности внутригодового режима рек в значительной степени влияют на распределение строительных работ по сезонам года, выбор методов ведения этих работ. Организация и планирование строительства, а также назначение сроков производства отдельных видов работ и возведения отдельных типов этих сооружений предопределяет необходимость учета сроков и продолжительности стояния характерных уровней воды и других, сопряженных с ними гидрологических характеристик внутригодового режима рек. Инженерно-гидрологические обоснования в период строительства основываются на нормируемом рабочем уровне воды. За этот уровень принято принимать наивысший возможный в период производства строительных работ уровень воды нормируемой вероятности превышения. Вопросы совершенствования критериев ВП рабочего уровня подробно рассмотрены в работах [4, 51, 52]. Регламентация критериев ВП с учетом различной сложности функционирования и значимости этих сооружений по восприятию нагрузок и воздействий и их взаимообусловленности функционирования с основными возводимыми сооружениями приведена в табл. 6 и 7. Таблица 6 Классификация временных сооружений по степени ответственности
В зависимости от конкретных условий при строительстве особо сложных и ответственных внеклассных мостов, а также городских и совмещенных мостов, разрушение которых способно вызвать длительное нарушение жизнеобеспечения территорий с ущербами, превышающими первоначальную стоимость строительства, возможно усиление критериев ВП и доведение их до уровня капитальных сооружений. Особое значение это имеет для мостов, располагаемых в густонаселенных мегаполисах, разобщенных и отдаленных территориях. Таблица 7 ВП максимальных расходов и уровней воды в зависимости от класса ответственности сооружения
В предшествующих отечественных и зарубежных исследованиях, а также в нормативных документах [34, 44, 45, 53] не рассматривались и не были регламентированы методы определения рабочих уровней воды при наличии многолетних наблюдений за уровенным режимом рек. Не получили они своего методологического обобщения и в практике ведущих проектных организаций. Все это обусловило необходимость изучения особенностей характера очертаний эмпирических кривых распределения ВП месячных уровней воды с целью выявления возможных методов их аппроксимации в требуемом диапазоне ВП. По результатам изучения рядов годовых максимумов среднемесячных уровней воды на отдельных реках с ранжировано-вероятностной и статистической обработкой рядов этих уровней воды, построением и анализом их эмпирических кривых было установлено, что на створах всех этих рек характер асимметричности эмпирических кривых по каждому месяцу года индивидуален и весьма различен. Так, например, на р. Иртыше эти кривые, в январе, феврале, марте, октябре, ноябре и декабре характеризуются слабо выраженной положительной асимметрией, а в остальные месяцы - явно выраженной отрицательной асимметрией в их верхней части (рис. 19). Рис. 19. Расчетные кривые распределения ВП месячных уровней воды р. Иртыша (г. Ханты-Мансийск, 1931-1999 гг.) По результатам этого анализа установлено, что в качестве расчетных кривых распределения ВП годовых максимумов среднемесячных уровней воды должны быть использованы три типа таких кривых: 1 тип - нормального распределения; 2 тип - с явно выраженной положительной асимметрией; 3 тип- с отрицательной асимметрией в верхней части ряда. Особенности очертания и характер асимметричности эмпирических кривых 2-го и 3-го типов в диапазоне ВП от 0,1 до 99,8 %, а также величины коэффициентов вариации и асимметрии и их соотношений выходят за рамки рекомендуемых СНиП 2.01.14-83 расчетных кривых и регламентированных величин их параметров, что обуславливает необходимость обоснования выбора других расчетных кривых распределения ВП исследуемых уровней воды. Анализ этих особенностей эмпирических кривых среднемесячных уровней воды и ранее известных разновидностей расчетных кривых распределения ВП других гидрологических характеристик позволил установить, что для исследуемых уровней воды применительно ко 2 и 3 типам этих кривых наиболее предпочтительны параболические кривые следующих двух разновидностей: непрерывно вогнутого или выпуклого очертания по всему диапазону ВП; вогнутого очертания в средней или нижней части ряда с сопрягаемыми отрезками параболических кривых выпуклого очертания или касательно-прямыми вставками в верхней (нижней) части ряда. Этими кривыми возможно достичь наиболее полного соответствия с натурными точками эмпирических кривых. Годовой строительный период характеризуется несколькими внутригодовыми сезонами. Для определения рабочих уровней и расходов воды этот период принято дифференцировать по месячным интервалам с определением этих уровней и расходов воды по каждому месяцу года. Анализ типов внутригодового распределения речного стока, выполненный в работе [54], позволил при недостаточности исходных данных в створе строительства рекомендовать для определения максимальных расходов воды 10 и 50%-ной ВП каждого месяца года следующие формулы:
где Q10 - максимальный годовой расход 10 %-ной ВП, м3/с; кп - переходный коэффициент от годового максимума с ВП 10 % к месячному расходу воды с ВП = 10%, определяемый в зависимости от месяца года и типа внутригодового распределения стока [54]; Qм - максимальный расход воды 10 %-ной ВП каждого месяца года, определяемый по формуле (3), м3/с; кv - модульный коэффициент редукции максимального годового расхода воды 10%-ной ВП, определяемый в зависимости от коэффициента изменчивости паводочного стока Сv. Зависимость модульного коэффициента ку от коэффициента изменчивости Су приведена ниже. Cv kv 0,2 0,75 0,4 0,59 0,6 0,46 0,8 0,37 1,0 0,32 1,2 0,26 При проектировании наплавных мостов учет особенностей эксплуатации в зимнее время имеет большое значение. Например, в случае сильного ледохода целесообразно устройство специального затона для заводки в него моста до начала ледостава. При слабом ледоходе обычно выводят только среднюю часть и, как правило, устройства специального затона не требуется, но место для расположения выведенной части должно быть выбрано с надлежащим обоснованием. В случае наличия опасности повреждения моста льдом или карчами должны предусматриваться защитные мероприятия, например устройство бон или запаней. Условия эксплуатации влияют на выбор системы наплавного моста. Известно, что система наплавного моста определяется конструкцией его плавучей (речной) части и подразделяется на: разрезную, шарнирную и неразрезную [38]. Одним из важнейших эксплуатационных достоинств наплавного моста является возможность не только вывести из состава моста звено или развести весь мост, но и убрать при необходимости отдельный понтон, причем без предварительного подведения запасного. При этом пропуск транспортных средств по мосту не прекращается. Этим упомянутым удобствам эксплуатации отвечает шарнирная или неразрезная системы, в то время как по экономическим показателям предпочтение остается на стороне простейшей балочно-разрезной системы. В то же время при сооружении наплавных мостов балочно-разрезных систем могут появиться затруднения, особенно при большой глубине воды. В случае потери плавучести хотя бы одного понтона разрушение распространяется на два смежных пролета. А при выводе одного понтона необходима одновременная замена его запасным, что сопряжено с дополнительными сложностями. Другим немаловажным эксплуатационным преимуществом является применение больших пролетов, что обеспечивает свободный пропуск весеннего ледохода, снижение эксплуатационных расходов за счет меньшего количества плавучих опор, а также повышенную устойчивость моста при волновых воздействиях. Для обеспечения свободного пропуска ледохода необходимо знать размер ледяных полей при ледоходе. Так, Методическими указаниями [55] среднюю длину ледяного поля рекомендуется определять не более длины наибольшего пролета моста. Одновременно с этим, её рекомендуется определять равной 3Вр, где В - ширина реки во время вскрытия льда. Пособием ПМП-91 [53] длину и ширину льдин рекомендуется принимать одинаковой и равной 0,1В, где В - ширина реки. Нетрудно заметить, что не величина наибольшего пролета моста и не ширина реки предопределяют размеры ледяных полей, а конкретные гидрометеорологические условия их образования. Размеры минимально допустимого пролета моста должны определяться размерами ледяных полей, а не наоборот. Отмечая весьма существенные погрешности методических документов [53, 55], следует отметить крайнюю необходимость рекомендаций по определению размеров ледяных полей для проектирования объектов, расположенных в неизученных, отдаленных и малообжитых районах строительства. Анализируя особенности гидрометеорологических условий формирования речного стока в зимне-весенний периоды, а также становления устойчивого ледяного покрова на незарегулированных реках можно убедиться, что этот покров устанавливается при меньших уровнях воды, соответствующих датам начала промерзания водной поверхности. Эти уровни обуславливают ширину руслового потока, его глубины и скорость течения воды, а также наибольшую ширину ледяного покрова. С учетом этого более оправдано размеры ледяных полей при ледоходе определять на данной стадии изучения по следующим формулам:
где Fлп - площадь наибольших льдин при весеннем ледоходе, м2; Вмр - ширина русла при зимних меженных уровнях воды в период становления устойчивого ледяного покрова, м; Lм - максимальный размер льдин, м; ал - коэффициент редукции размеров льдин. Ниже приведена зависимость коэффициента ал от Вмр. Вмр, м aл 350 и более 0,1 300 - 249 0,11 250 - 199 0,12 200 - 149 0,13 150 - 100 0,15 Менее 1000 2 Несмотря на вышесказанное, вопрос беззаторного пропуска льда не следует считать решенным даже приближенно. Крупное ледяное поле необязательно может остановиться перед опорами моста, оно может быть ими прорезано. В этом вопросе требуются дальнейшие исследования, учитывающие возможность разрушения льдины, навалившейся на опору моста. Подводя итоги обсуждения обоснования наиболее целесообразной системы наплавного моста, отметим, что при выборе варианта экономические показатели могут идти в разрез с преимуществами эксплуатации. Поэтому применительно к наплавным мостам оптимизацию схемы целесообразно производить исходя из эксплуатационных соображений. ЗАКЛЮЧЕНИЕНаплавные мосты являются одной из разновидностей комплекса водопропускных сооружений на действующей транспортной сети. Конструктивно-технологические решения, транспортно-эксплуатационные качества и гидротехнические свойства этих сооружений весьма многофункциональны. Они способны обеспечить безопасное функционирование в условиях воздействия паводков и в межпаводочный (меженный) период. В условиях России наплавные мосты продолжают строиться и эксплуатироваться на автомобильных дорогах с относительно небольшой интенсивностью движения транспортных средств. В то же время на современном этапе роль наплавных мостов становится более значительной: они применяются не только на дорожной сети местного значения, но и становятся частью основной транспортной сети федерального уровня все в большем количестве стран. В шт. Вашингтон (США) функционируют три наплавных моста значительной протяженности, в Норвегии с 1992 г. и 1994 г. введены в эксплуатацию два крупных наплавных моста через морские проливы. При сравнении с вариантами высоководных мостов или тоннелей наплавные мосты являются особенно конкурентоспособными в условиях пересечения широких, глубоких водных преград с преобладанием в основаниях грунтов слабой несущей способности. Так, в условиях пересечения оз. Вашингтон в г. Сиэтле (США), где ширина озера составляет 1610 м, глубина воды 61 м, толщина слоя слабых пород дна 61 м строительная стоимость варианта наплавного моста оказалась в 3-5 раз меньше по сравнению с высоководным мостом и тоннелем. Нельзя не отметить, что проектирование наплавных мостов предопределяет необходимость решения комплекса проблемных вопросов, не имеющих нормативного обеспечения. По составу, детальности и глубине проработок этот комплекс даже шире комплекса проектных обоснований строительства высоководных мостов и имеет свои специфические особенности. Так, наиболее важной характеристикой, определяющей основные конструктивные параметры наплавных мостов, является амплитуда колебания уровней воды. Вопросы установления нормативных критериев ВП гидрологических характеристик требуют проведения дальнейших научных исследований. Необходимы дополнение и переработка строительных норм, в которых была бы отражена специфика наплавных мостов, а также разработка методических и рекомендательных документов. Все же практика показывает, что, несмотря на пробелы в нормативной базе, при серьезной проектной проработке, надлежащей эксплуатации наплавные мосты являются безопасными, эффективными, долговечными, комфортными для движения транспортных средств мостовыми сооружениями. Несмотря на многие проблемные вопросы проектирования и сооружения, этот тип мостов, являясь самым древним, использовавшимся для пересечения водных преград, найдет более широкое применение в будущем. СПИСОК ЛИТЕРАТУРЫ1. Химченко В.П., Сбитнев В.И., Сбитнев А.В. «Рубеж -2000» взят! // Трансп. стр-во. - 2000. - № 10. - С. 20-23. 2. Мосты и сооружения на дорогах. Ч. 2. / Е.Е. Гибшман, В.С. Кириллов, Л.В. Маковский и др. - 2-е изд., перераб. и доп. - М.: Транспорт, 1972. - 404 с. 3. Уманский А.А. Наплавные мосты. - М.: Трансжелдориздат, 1939. - 392 с. 4. Gloyd C.S. Concrete floating bridges // Concrete International. - 1998. - May. - P. 17-24. 5. Латышенков A.M. Основы гидравлики: Учеб. для гидрометеорол. техникумов. - 2-е изд., перераб. и доп. - Л.: Гидрометеоиздат, 1971. - 248 с. 6. Wright A.G. Buoyed by a water-tight design // Engineering News Record. - 1993. - May 31. - P. 22-25. 7. 8. Plagemann W. Neubau der Schwimmbrucke in Seatle // Bauingenieur. - 1992. - Vol. 67. - № 6. - P. 302. 9. Lwin M.M. The Lacey V. 10. Моранди Р. Значительные сооружения из преднапряженного железобетона: Мосты, виадуки, эстакады. - Пер. ст. из журн.: Beton und Stahlbetonbau. - 1962. - № 12. - С. 275. 11. Brown С.В., Christensen D.R., Heavner J.W., et al. Floating Bridge Drawspan Maintenance // J. Struct. Div. Proc. Amer. Soc. Civ. Eng. - 1981. - 107, № 11. - P. 2124-2146. 12. Arda T.S., Yardimci N., Eyrekci O.
Rehabilitation of two floating bridges, Turkey // Structural Engineering
International. - 13. Saul R., Zellner W., Eilzer W., Braun M., Veeser K. Die neue Galata-Brucke in Istanbul-Entwurf // Bauingenieur. - 1992. - 67, № 10. - P. 433-444. 14. Solland G., Haugland S., Gustavsen J.H. The 15. Reina P. Box girders float across a fjord // Engineering News Record. - 1994. - March 7. - P. 24-26. 16. Nothern lights // Bridge design and engineering. - 1996. - August. - P. 24. 17. Competition success // International Construction. - 1994. - December. - P. 64. 18. Watanabe E. Floating Bridges: Past and Present
// Structural Engineering International. - 19. Giovanni M. Per lo Stretto di Messina un ponte flottantea sostentamento indrostatico // Nuovo cant. - 1982. - 16, № 3. - P. 46-51. 20. Schlaich J. Variety in Bridge Design //
Proceedings of the Fourth Symposium on Strait Crossings, Bergen/Norway, 2-5
September 2001. - A.A. Balkema Publishers. Lisse / Abingdon / Exton (pa) / 21. Alp A.V. Worlds longest floating sea
crossing-Istanbul bypass «TRANSMAR» // Proceedings of the Fourth Symposium on
Strait Crossings, Bergen/Norway, 2-5 September 2001. - A.A. Balkema Publishers.
Lisse / Abingdon / Exton (pa) / 22. Hamel В., Zijlstra D., Nuijens D., Barneveld A. The
new waterway // Proceedings of the Fourth Symposium on Strait Crossings,
Bergen/Norway, 2-5 September 2001. - A.A. Balkema Publishers. - Lisse /
Abingdon / Exton (pa) / 23. Chen W.F., 24. Costing out 25. Аварии и катастрофы. Предупреждение и ликвидация последствий: Учеб. пособие. Кн. 4 / В.А. Котляревский, А.В. Забегаев, Ю.Н. Глазунов и др.; Под ред. В.А. Котляревского, А.В. Забегаева. - М.: Изд-во АСВ, 1998. - 208 с. 26. Ойстач С. Надежный, долговечный, недорогой // Автомоб. дороги. - 1999. - № 2. - С. 5. 27. Технико-экономический доклад. Мостовой переход через Татарский пролив (пролив Невельского) на соединении Хабаровского края и острова Сахалин: Технич. докл. / Гипротрансмост. - М., 1995. - 14 с. 28. СНиП 2.05.03-84*. Мосты и трубы / Минстрой России: Введ. 01.01.86. - М.: ГП ЦПП Минстроя России, 1996. - 214 с. 29. Методические указания по проектированию плавучих средств / Мин-во обороны СССР. - М.: Воениздат, 1979. - 184 с. 30. Инструкция по проектированию железнодорожных наплавных мостов и паромных переправ (ПНМ-79) / Минтрансстрой СССР, ВПТИТрансстрой. - М., 1980. - 165 с. 31. Методические рекомендации по расчету железнодорожных наплавных мостов (РНМ-79) / Минтрансстрой СССР, ВПТИТрансстрой. - М., 1980. - 184 с. 32. Перевозников Б.Ф., Селиверстов В.А. Гидрологические аспекты повышения надежности автодорожных переходов через водотоки // Новости в дор. деле: Науч.-техн. информ. сб. / Информавтодор. - М., 2003. - Вып.4. - С. 5-24. 33. СНиП 2.05.02-85. Автомобильные дороги / Госстрой СССР: Введ. 01.01.87. - М.: ЦИТП Госстроя СССР, 1986. - 56 с. 34. Инструкция по проектированию вспомогательных сооружений и устройств для строительства мостов: ВСН 136-78 / Минтрансстрой СССР. - М., 1978. - 300 с. 35. Субх Мухаммед Бадр. Методика расчета максимального дождевого стока применительно к дорожным сооружениям республики Ливан: Дисс канд. техн. наук. - М., 1994. - 206 с. 36. Чандра Д.П. Максимальный дождевой сток для расчета дорожных сооружений Непала: Дисс. канд. техн. наук. - М., 1996. - 229 с. 37. 38. Телов В.И., Кануков И.М. Наплавные мосты, паромные и ледяные переправы / Под ред. В.И. Телова. - М.: Транспорт, 1978. - 384 с. 39. СНиП 23-01-99. Строительная климатология / Госстрой России: Введ. 01.01.2000. - М.: ГУП ЦПП, 2000. - 57 с. 40. СНиП 2.01.07-85. Нагрузки и воздействия / Госстрой России: Введ. 01.01.87. - М.: ГУП ЦПП, 2000. - 44 с. 41. СНиП 2.06.04-82*. Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов) / Минстрой России: Введ. 01.01.84. - М.: ГП ЦПП, 1996. - 48 с. 42. СНиП 3.01.01-85*. Организация строительного производства / Госстрой России: Введ. 01.01.86. - М.: ГУП ЦПП, 2000. - 56 с. 43. СНиП 3.06.04-91. Мосты и трубы / Госстрой России: Введ. 01.07.92.-М.: ГУП ЦПП, 2003. - 168 с. 44. СНиП 2.01.14-83. Определение расчетных гидрологических характеристик / Госстрой СССР: Введ. 01.07.84. - М.: Стройиздат, 1985. - 36 с. 45. Пособие по определению расчетных гидрологических характеристик / ГГИ. - Л.: Гидрометеоиздат, 1984. - 448 с. 46. СНиП 22-01-95. Геофизика опасных природных воздействий / Минстрой России: Введ. 01.01.96. - М.: ГП ЦПП, 1996. - 9 с. 47. СП 11-103-97. Инженерно-гидрометеорологические изыскания для строительства / Госстрой России. - М.: ПНИИС Госстроя России, 1997. - 29 с. 48. Перевозников Б.Ф., Селиверстов В.А. Ледовые процессы и их воздействия на дорожно-мостовые сооружения. - М., 1999. - 76 с. - (Автомоб. дороги: Обзорн. информ. / Информавтодор; Вып. 4). 49. Перевозников Б.Ф. Расчеты максимального стока при проектировании дорожных сооружений. - М.: Транспорт, 1975. - 304 с. 50. Переходы через водотоки / Л.Г. Бегам, Е.В. Болдаков, Б.Ф. Перевозников и др. - М.: Транспорт, 1973. - 456 с. 51. Селиверстов В.А. Нормативные требования и рекомендации по определению факторов гидрометеорологических воздействий и нагрузок для проектирования временных и вспомогательных сооружений // Автомоб. дороги: Информ. сб./ Информавтодор. - 1997. - Вып. 8. - С. 8-31. 52. Селиверстов В.А. Вероятностные критерии паводочных воздействий на временные и вспомогательные сооружения в мостостроении. - М., 2000. - С. 281-292. - (Сб. науч.-метод. работ по повышению уровня обоснованности проектов автомоб. дорог и сооружений на них / Союздорпроект; Вып. 4.) 53. Пособие к СНиП 2.05.03-84 (Мосты и трубы) по изысканиям и проектированию железнодорожных и автомобильных мостовых переходов через водотоки (ПМП-91) / Корпорация «Трансстрой», ПКТИТрансстрой. - М.: ЦНИИС. - 1992. - 411 с. 54. Селиверстов В. А. Методы определения рабочих уровней воды для проектирования временных и вспомогательных сооружений в мостостроении. - М., 1999. - С. 180-190. - (Сб. науч.-метод. работ по повышению уровня обоснованности проектов автомоб. дорог и сооружений на них / Союздорпроект; Вып. 3). 55. Методические указания по определению ледовых нагрузок на опоры мостов / ЦНИИС. - М., 1993. - 53 с.
Вернуться в "Каталог СНиП"
Источник информации: https://internet-law.ru/stroyka/text/52390
На эту страницу сайта можно сделать ссылку:
На правах рекламы:
|