Полное меню
Таблица А.1 - Предпочтительные параметры вибрации, возбуждаемой калибратором
В технических данных калибратора (указанных, например, в сертификате или технической документации) должны быть определены ожидаемые значения корректированного ускорения для всех возможных режимов работы средства измерений и для всех возможных сочетаний частот и амплитуд возбуждаемой калибратором вибрации. А.3 Поверка калибратора Поверку калибратора проводят методом сравнения по ИСО 16063-21 (который распространяется также на виброкалибраторы для полевых условий) с использованием эталонного датчика вибрации. В процессе испытаний эталонный датчик вибрации устанавливают на вибростол калибратора, после чего измеряют среднеквадратичное значение и частоту воспроизводимого им ускорения. Целью испытаний является проверка, соответствуют ли параметры воспроизводимой вибрации значениям, указанным в таблице А.1. Расширенная неопределенность измерений - по ИСО 16063-21, приложение А. Приложение В
|
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номинальная |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0. ...° |
|
-10 |
0,1 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,02494 |
-32,06 |
160,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,03941 |
-28,09 |
154,5 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,06198 |
-24,15 |
147,4 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,09645 |
-20,31 |
138,1 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,1464 |
-16,69 |
126,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,2113 |
-13,50 |
110,7 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,2800 |
-11,06 |
93,14 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,3347 |
-9,51 |
75,73 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,3666 |
-8,72 |
60,94 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,3808 |
-8,39 |
49,84 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
0,3853 |
-8,29 |
42,42 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
0,3864 |
-8,26 |
38,51 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
0,3916 |
-8,14 |
38,27 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
0,4168 |
-7,60 |
41,76 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
0,4960 |
-6,09 |
46,57 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
0,6653 |
-3,54 |
45,79 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
0,8850 |
-1,06 |
34,64 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
1,026 |
0,22 |
17,75 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
1,054 |
0,46 |
1,770 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
1,026 |
0,23 |
-11,94 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
Окончание таблицы В. 1
n |
Среднегеометрическая |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номинальная |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
0,9745 |
-0,22 |
-24,56 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
0,9042 |
-0,87 |
-37,10 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
0,8144 |
-1,78 |
-49,93 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
0,7088 |
-2,99 |
-62,89 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
0,5973 |
-4,48 |
-75,75 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
0,4906 |
-6,18 |
-88,55 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,3950 |
-8,07 |
-101,7 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,3118 |
-10,12 |
-116,0 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,2389 |
-12,44 |
-132,2 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,1734 |
-15,22 |
-150,9 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,1154 |
-18,75 |
-171,3 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,06929 |
-23,19 |
-191,3 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,03818 |
-28,36 |
-208,5 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,01999 |
-33,98 |
-222,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,01020 |
-39,82 |
-232,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,005154 |
-45,76 |
-240,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,002591 |
-51,73 |
-247,1 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.1 - Модуль функции частотной коррекции Wb
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.2 - Фаза функции частотной коррекции Wb
Таблица В.2 - Функция частотной коррекции Wc для общей вибрации в горизонтальном направлении (ось х), воздействующей на человека в положении сидя, спинка сиденья (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номинальная |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ... ° |
|
-10 |
01 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,06238 |
-24,10 |
158,8 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,09858 |
-20,12 |
153,1 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,1551 |
-16,19 |
145,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,2415 |
-12,34 |
135,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,3669 |
-8,71 |
123,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,5302 |
-5,51 |
107,0 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,7042 |
-3,05 |
88,38 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,8442 |
-1,47 |
69,65 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,9292 |
-0,64 |
53,11 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,9716 |
-0,25 |
39,64 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
0,9910 |
-0,08 |
28,88 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
1,000 |
0,00 |
20,11 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
1,006 |
0,06 |
12,66 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
1,012 |
0,10 |
5,957 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
1,017 |
0,15 |
-0,5318 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
1,023 |
0,19 |
-7,327 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
1,024 |
0,21 |
-15,00 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
1,013 |
0,11 |
-24,10 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
0,9739 |
-0,23 |
-34,91 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
0,8941 |
-0,97 |
-47,06 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
0,7762 |
-2,20 |
-59,37 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
0,6425 |
-3,84 |
-70,70 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
0,5166 |
-5,74 |
-80,61 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
0,4098 |
-7,75 |
-89,43 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
0,3236 |
-9,80 |
-97,78 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
0,2549 |
-11,87 |
-106,4 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,2002 |
-13,97 |
-115,9 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,1557 |
-16,15 |
-127,3 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,1182 |
-18,55 |
-141,2 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,08538 |
-21,37 |
-158,0 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
Окончание таблицы В.2
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,05665 |
-24,94 |
-177,0 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,03394 |
-29,39 |
-195,8 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,01868 |
-34,57 |
-212,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,009772 |
-40,20 |
-225,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,004987 |
-46,04 |
-235,0 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,002518 |
-51,98 |
-242,6 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,001266 |
-57,95 |
-248,5 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.3 - Модуль функции частотной коррекции Wc
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.4 - Фаза функции частотной коррекции Wc
Таблица В.3 - Функция частотной коррекции Wd для общей вибрации в горизонтальном направлении (ось х или у), воздействующей на человека в положении сидя, стоя или лежа (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-10 |
0,1 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,06242 |
-24,09 |
157,6 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,09867 |
-20,12 |
151,5 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,1553 |
-16,18 |
143,6 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,2420 |
-12,32 |
133,2 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,3862 |
-8,68 |
119,8 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,5330 |
-5,47 |
102,8 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,7097 |
-2,98 |
83,11 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,8540 |
-1,37 |
62,84 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,9443 |
-0,50 |
44,21 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,9914 |
-0,08 |
27,86 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
1,011 |
0,10 |
13,09 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
1,007 |
0,06 |
-1,131 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
0,9707 |
-0,26 |
-15,55 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
0,8913 |
-1,00 |
-30,06 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
0,7733 |
-2,23 |
-43,71 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
0,6398 |
-3,88 |
-55,44 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
0,5143 |
-5,78 |
-64,89 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
0,4081 |
-7,78 |
-72,34 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
0,3226 |
-9,83 |
-78,34 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
0,2550 |
-11,87 |
-83,39 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
0,2017 |
-13,91 |
-87,90 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
0,1597 |
-15,93 |
-92,20 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
0,1266 |
-17,95 |
-96,59 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
0,1004 |
-19,97 |
-101,3 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
0,07958 |
-21,98 |
-106,8 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
0,06299 |
-24,01 |
-113,3 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,04965 |
-26,08 |
-121,3 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,03872 |
-28,24 |
-131,4 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,02946 |
-30,62 |
-144,4 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,02130 |
-33,43 |
-160,6 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,01414 |
-36,99 |
-179,0 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,008478 |
-41,43 |
-197,4 |
+ 26/-21 |
+ 2/-2 |
+ 12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,004668 |
-46,62 |
-213,4 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,002442 |
-52,24 |
-226,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,001246 |
-58,09 |
-235,8 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,000629 |
-64,02 |
-243,3 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,000316 |
-70,00 |
-249,0 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В.5 - Модуль функции частотной коррекции Wd
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В.6 - Фаза функции частотной коррекции Wd
Таблица В.4 - Функция частотной коррекции We для общей угловой вибрации во всех направлениях, воздействующей на человека в положении сидя (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции We |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-10 |
0,1 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,06252 |
-24,08 |
155,9 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,09893 |
-20,09 |
149,3 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,1560 |
-16,14 |
140,8 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,2435 |
-12,27 |
129,7 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,3715 |
-8,60 |
115,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,5394 |
-5,36 |
96,68 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,7198 |
-2,86 |
74,87 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,8635 |
-1,27 |
51,65 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,9389 |
-0,55 |
29,04 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,9423 |
-0,52 |
7,786 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
0,8798 |
-1,11 |
-11,85 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
0,7683 |
-2,29 |
-29,24 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
0,6372 |
-3,91 |
-43,67 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
0,5127 |
-5,80 |
-55,05 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
0,4070 |
-7,81 |
-63,83 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
0,3218 |
-9,85 |
-70,66 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
0,2543 |
-11,89 |
-76,11 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
0,2012 |
-13,93 |
-80,61 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
0,1594 |
-15,95 |
-84,51 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
0,1263 |
-17,97 |
-88,06 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
0,1002 |
-19,98 |
-91,49 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
0,07954 |
-21,99 |
-94,99 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
0,06314 |
-23,99 |
-98,77 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
0,05011 |
-26,00 |
-103,1 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
0,03975 |
-28,01 |
-108,1 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
0,03147 |
-30,04 |
-114,3 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,02481 |
-32,11 |
-122,1 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,01935 |
-34,26 |
-132,1 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,01473 |
-36,64 |
-145,0 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,01065 |
-39,46 |
-161,0 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,007071 |
-43,01 |
-179,3 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,004239 |
-47,46 |
-197,7 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,002334 |
-52,64 |
-213,6 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,001221 |
-58,27 |
-226,2 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,0006232 |
-64,11 |
-236,0 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,0003147 |
-70,04 |
-243,4 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,0001528 |
-76,02 |
-249,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В.7 - Модуль функции частотной коррекции We
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В.8 - Фаза функции частотной коррекции We
Таблица В.5 - Функция частотной коррекции Wf для общей низкочастотной вибрации в вертикальном направлении (ось z), воздействующей на человека в положении сидя или стоя (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-17 |
0,02 |
0,01995 |
0,06208 |
-24,14 |
156,8 |
0,02407 |
-32,37 |
160,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-16 |
0,025 |
0,02512 |
0,09811 |
-20,17 |
150,5 |
0,03803 |
-28,40 |
156,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-15 |
0,0315 |
0,03162 |
0,1544 |
-16,23 |
142,4 |
0,06021 |
-24,41 |
150,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-14 |
0,04 |
0,03981 |
0,2404 |
-12,38 |
131,8 |
0,09619 |
-20,34 |
143,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-13 |
0,05 |
0,05012 |
0,3653 |
-8,75 |
118,0 |
0,1575 |
-16,06 |
134,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-12 |
0,063 |
0,06310 |
0,5282 |
-5,54 |
100,6 |
0,2675 |
-11,45 |
121,4 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-11 |
0,08 |
0,07943 |
0,7020 |
-3,07 |
80,31 |
0,4537 |
-6,86 |
99,53 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-10 |
0,1 |
0,1000 |
0,8420 |
-1,49 |
59,38 |
0,6951 |
-3,16 |
68,36 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-9 |
0,125 |
0,1259 |
0,9265 |
-0,66 |
40,04 |
0,9000 |
-0,92 |
32,06 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-8 |
0,16 |
0,1585 |
0,9671 |
-0,29 |
22,97 |
1,004 |
0,04 |
-5,596 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-7 |
0,2 |
0,1995 |
0,9824 |
-0,15 |
7,579 |
0,9928 |
-0,06 |
-44,61 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-6 |
0,25 |
0,2512 |
0,9826 |
-0,15 |
-7,217 |
0,8501 |
-1,41 |
-85,43 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-5 |
0,315 |
0,3162 |
0,9677 |
-0,29 |
-22,58 |
0,6149 |
-4,22 |
-125,5 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-4 |
0,4 |
0,3981 |
0,9279 |
-0,65 |
-39,60 |
0,3884 |
-8,22 |
-162,1 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
-3 |
0,5 |
0,5012 |
0,8447 |
-1,47 |
-58,89 |
0,2225 |
-13,05 |
-195,6 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-2 |
0,63 |
0,6310 |
0,7059 |
-3,02 |
-79,79 |
0,1157 |
-18,73 |
-226,8 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-1 |
0,8 |
0,7943 |
0,5324 |
-5,47 |
-100,1 |
0,05434 |
-25,30 |
-254,6 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
0 |
1 |
1 |
0,3689 |
-8,66 |
-117,6 |
0,02352 |
-32,57 |
-277,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
1 |
1,25 |
1,259 |
0,2429 |
-12,29 |
-131,5 |
0,00971 |
-40,26 |
-295,8 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
2 |
1,6 |
1,585 |
0,1561 |
-16,13 |
-142,2 |
0,00392 |
-48,14 |
-309,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
3 |
2 |
1,995 |
0,0992 |
-20,07 |
-150,4 |
0,00157 |
-56,11 |
-320,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.9 - Модуль функции частотной коррекции Wf
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 10 - Фаза функции частотной коррекции Wf
Таблица В.6 - Функция частотной коррекции Wf для локальной вибрации во всех направлениях (на основе ИСО 5349-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-1 |
0,8 |
0,7943 |
0,01585 |
-36,00 |
169,7 |
0,01586 |
-36,00 |
168,1 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
0 |
1 |
1,000 |
0,02511 |
-32,00 |
167,0 |
0,02514 |
-31,99 |
165,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
1 |
1,25 |
1,259 |
0,03978 |
-28,01 |
163,5 |
0,03985 |
-27,99 |
161,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
2 |
1,6 |
1,585 |
0,06297 |
-24,02 |
159,1 |
0,06314 |
-23,99 |
155,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
3 |
2 |
1,995 |
0,09950 |
-20,04 |
153,4 |
0,09992 |
-20,01 |
149,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
4 |
2,5 |
2,512 |
0,1565 |
-16,11 |
146,1 |
0,1576 |
-16,05 |
140,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
5 |
3,15 |
3,162 |
0,2436 |
-12,27 |
136,4 |
0,2461 |
-12,18 |
129,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
6 |
4 |
3,981 |
0,3699 |
-8,64 |
123,7 |
0,3754 |
-8,51 |
115,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
7 |
5 |
5,012 |
0,5336 |
-5,46 |
107,9 |
0,5450 |
-5,27 |
96,70 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
8 |
6,3 |
6,310 |
0,7071 |
-3,01 |
89,59 |
0,7272 |
-2,77 |
74,91 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
9 |
8 |
7,943 |
0,8457 |
-1,46 |
71,30 |
0,8731 |
-1,18 |
51,74 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
10 |
10 |
10,00 |
0,9291 |
-0,64 |
55,36 |
0,9514 |
-0,43 |
29,15 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
11 |
12,5 |
12,59 |
0,9699 |
-0,27 |
42,62 |
0,9576 |
-0,38 |
7,810 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9877 |
-0,11 |
32,76 |
0,8958 |
-0,96 |
-12,05 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
13 |
20 |
19,95 |
0,9950 |
-0,04 |
25,14 |
0,7820 |
-2,14 |
-29,71 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
19,15 |
0,6471 |
-3,78 |
-44,37 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
15 |
31,5 |
31,62 |
0,9992 |
-0,01 |
14,34 |
0,5192 |
-5,69 |
-55,89 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
16 |
40 |
39,81 |
0,9997 |
0,00 |
10,38 |
0,4111 |
-7,72 |
-64,78 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
17 |
50 |
50,12 |
0,9999 |
0,00 |
7,027 |
0,3244 |
-9,78 |
-71,70 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
18 |
63 |
63,10 |
0,9999 |
0,00 |
4,065 |
0,2560 |
-11,83 |
-77,27 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
19 |
80 |
79,43 |
1,000 |
0,00 |
1,330 |
0,2024 |
-13,88 |
-81,94 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
Окончание таблицы В. 6
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
20 |
100 |
100,0 |
1,000 |
0,00 |
-1,330 |
0,1602 |
-15,91 |
-86,06 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
21 |
125 |
125,9 |
0,9999 |
0,00 |
-4,065 |
0,1270 |
-17,93 |
-88,92 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
22 |
160 |
158,5 |
0,9999 |
0,00 |
-7,027 |
0,1007 |
-19,94 |
-93,75 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
23 |
200 |
199,5 |
0,9997 |
0,00 |
-10,38 |
0,07988 |
-21,95 |
-97,80 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
24 |
250 |
251,2 |
0,9992 |
-0,01 |
-14,34 |
0,06338 |
-23,96 |
-102,3 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
25 |
315 |
316,2 |
0,9980 |
-0,02 |
-19,15 |
0,05026 |
-25,97 |
-107,5 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
26 |
400 |
398,1 |
0,9950 |
-0,04 |
-25,14 |
0,03980 |
-28,00 |
-113,8 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
27 |
500 |
501,2 |
0,9877 |
-0,11 |
-32,76 |
0,03137 |
-30,07 |
-121,7 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
28 |
630 |
631,0 |
0,9699 |
-0,27 |
-42,62 |
0,02447 |
-32,23 |
-131,8 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
29 |
800 |
794,3 |
0,9291 |
-0,64 |
-55,36 |
0,01862 |
-34,60 |
-144,7 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
30 |
1000 |
1000 |
0,8457 |
-1,46 |
-71,30 |
0,01346 |
-37,42 |
-160,8 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
31 |
1250 |
1259 |
0,7071 |
-3,01 |
-89,59 |
0,008940 |
-40,97 |
-179,2 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
32 |
1600 |
1585 |
0,5336 |
-5,46 |
-107,9 |
0,005359 |
-45,42 |
-197,5 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
33 |
2000 |
1995 |
0,3699 |
-8,64 |
-123,7 |
0,002950 |
-50,60 |
-213,5 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
34 |
2500 |
2512 |
0,2436 |
-12,27 |
-136,4 |
0,001544 |
-56,23 |
-226,2 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
35 |
3150 |
3162 |
0,1565 |
-16,11 |
-146,1 |
0,0007878 |
-62,07 |
-235,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
36 |
4000 |
3981 |
0,09950 |
-20,04 |
-153,4 |
0,0003978 |
-68,01 |
-243,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В.11 - Модуль функции частотной коррекции Wh
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 12 - Фаза функции частотной коррекции Wh
Таблица В.7 - Функция частотной коррекции Wj для вибрации в вертикальном направлении (ось х), воздействующей на голову лежащего человека (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номинальная |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-10 |
0,1 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,03099 |
-30,18 |
159,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,04897 |
-26,20 |
154,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,07703 |
-22,27 |
147,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,1199 |
-18,42 |
137,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,1821 |
-14,79 |
125,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,2630 |
-11,60 |
109,9 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,3489 |
-9,15 |
92,06 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,4176 |
-7,58 |
74,31 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,4585 |
-6,77 |
59,02 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,4776 |
-6,42 |
47,18 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
0,4844 |
-6,30 |
38,57 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
0,4851 |
-6,28 |
32,71 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
0,4832 |
-6,32 |
29,31 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
0,4819 |
-6,34 |
28,42 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
0,4889 |
-6,22 |
30,41 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
0,5246 |
-5,60 |
35,14 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
0,6251 |
-4,08 |
39,31 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
0,7948 |
-1,99 |
36,78 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
0,9470 |
-0,47 |
27,42 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
1,016 |
0,14 |
17,07 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
1,030 |
0,26 |
8,688 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
1,026 |
0,22 |
2,043 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
1,019 |
0,16 |
-3,729 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
1,012 |
0,10 |
-9,330 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
1,006 |
0,06 |
-15,31 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
1,000 |
0,00 |
-22,16 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,9911 |
-0,08 |
-30,43 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,9720 |
-0,25 |
-40,78 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,9304 |
-0,63 |
-53,90 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,8465 |
-1,45 |
-70,15 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
Окончание таблицы В. 7
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,7075 |
-3,01 |
-88,68 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,5338 |
-5,45 |
-107,1 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,3700 |
-8,64 |
-123,2 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,2437 |
-12,26 |
-135,9 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,1565 |
-16,11 |
-145,7 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,09951 |
-20,04 |
-153,2 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,06297 |
-24,02 |
-158,9 |
+ 26/-100 |
+ 2/-∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 13 - Модуль функции частотной коррекции Wj
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 14 - Фаза функции частотной коррекции Wj
Таблица В.8 - Функция частотной коррекции Wk для общей вибрации в вертикальном направлении (ось z), воздействующей на человека в положении сидя, стоя или лежа (на основе ИСО 2631-1)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция
частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-10 |
0,1 |
0,1000 |
0,06238 |
-24,10 |
159,3 |
0,03121 |
-30,11 |
159,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,09857 |
-20,12 |
153,6 |
0,04931 |
-26,14 |
154,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,1551 |
-16,19 |
146,3 |
0,07756 |
-22,21 |
147,1 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,2415 |
-12,34 |
136,6 |
0,1207 |
-18,37 |
137,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,3669 |
-8,71 |
124,1 |
0,1832 |
-14,74 |
125,4 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,5300 |
-5,51 |
108,3 |
0,2644 |
-11,55 |
109,9 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-4 |
0,4 |
0,3981 |
0,7037 |
-3,05 |
90,06 |
0,3504 |
-9,11 |
92,20 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-3 |
0,5 |
0,5012 |
0,8434 |
-1,48 |
71,76 |
0,4188 |
-7,56 |
74,54 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-2 |
0,63 |
0,6310 |
0,9279 |
-0,65 |
55,78 |
0,4588 |
-6,77 |
59,44 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
-1 |
0,8 |
0,7943 |
0,9693 |
-0,27 |
43,01 |
0,4767 |
-6,44 |
47,96 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
0 |
1 |
1,000 |
0,9874 |
-0,11 |
33,15 |
0,4825 |
-6,33 |
40,06 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
1 |
1,25 |
1,259 |
0,9949 |
-0,04 |
25,54 |
0,4846 |
-6,29 |
35,55 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
2 |
1,6 |
1,585 |
0,9980 |
-0,02 |
19,58 |
0,4935 |
-6,13 |
34,48 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
3 |
2 |
1,995 |
0,9992 |
-0,01 |
14,84 |
0,5308 |
-5,50 |
36,45 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
4 |
2,5 |
2,512 |
0,9997 |
0,00 |
10,97 |
0,6335 |
-3,97 |
37,98 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
5 |
3,15 |
3,162 |
0,9999 |
0,00 |
7,740 |
0,8071 |
-1,86 |
32,73 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
6 |
4 |
3,981 |
0,9999 |
0,00 |
4,941 |
0,9648 |
-0,31 |
20,35 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
7 |
5 |
5,012 |
1,0000 |
0,00 |
2,416 |
1,039 |
0,33 |
6,309 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
8 |
6,3 |
6,310 |
1,0000 |
0,00 |
0,0244 |
1,054 |
0,46 |
-6,841 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
9 |
8 |
7,943 |
1,0000 |
0,00 |
-2,366 |
1,037 |
0,32 |
-19,73 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-4,887 |
0,9884 |
-0,10 |
-33,30 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-7,679 |
0,8989 |
-0,93 |
-47,62 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-10,90 |
0,7743 |
-2,22 |
-61,84 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-14,75 |
0,6373 |
-3,91 |
-75,03 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-19,47 |
0,5103 |
-5,84 |
-87,02 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-25,40 |
0,4031 |
-7,89 |
-98,35 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,97 |
0,3160 |
-10,01 |
-109,9 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,78 |
0,2451 |
-12,21 |
-122,7 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-55,49 |
0,1857 |
-14,62 |
-137,6 |
+ 12/-11 |
+ 1/-1 |
+6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,41 |
0,1339 |
-17,47 |
-155,2 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,68 |
0,08873 |
-21,04 |
-174,8 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,9 |
0,05311 |
-25,50 |
-194,1 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,8 |
0,02922 |
-30,69 |
-210,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,4 |
0,01528 |
-36,32 |
-224,0 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,1 |
0,007795 |
-42,16 |
-234,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,5 |
0,003935 |
-48,10 |
-241,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,2 |
0,001978 |
-54,08 |
-247,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В. 15 - Модуль функции частотной коррекции Wk
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2- функция частотной коррекции
Рисунок В. 16 - Фаза функции частотной коррекции Wk
Таблица В.9 - Функция частотной коррекции Wm для общей вибрации в зданиях во всех направлениях (на основе ИСО 2631-2)
n |
Среднегеометрическая частота, Гц |
Характеристика полосового фильтра |
Функция частотной коррекции |
Допуск |
|||||||
Номи- |
Истинная |
Модуль |
дБ |
Фаза, ...° |
Модуль |
дБ |
Фаза, ...° |
Модуль, % |
дБ |
∆φ0, ...° |
|
-10 |
0,1 |
0,1000 |
0,01585 |
-36,00 |
169,7 |
0,01584 |
-36,00 |
168,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-9 |
0,125 |
0,1259 |
0,02511 |
-32,00 |
166,9 |
0,02510 |
-32,00 |
165,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-8 |
0,16 |
0,1585 |
0,03978 |
-28,01 |
163,5 |
0,03976 |
-28,01 |
161,9 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-7 |
0,2 |
0,1995 |
0,06297 |
-24,02 |
159,1 |
0,06293 |
-24,02 |
157,1 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-6 |
0,25 |
0,2512 |
0,0995 |
-20,04 |
153,4 |
0,09941 |
-20,05 |
150,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-5 |
0,315 |
0,3162 |
0,1565 |
-16,11 |
146,0 |
0,1563 |
-16,12 |
142,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-4 |
0,4 |
0,3981 |
0,2436 |
-12,27 |
136,3 |
0,2430 |
-12,29 |
132,2 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-3 |
0,5 |
0,5012 |
0,3699 |
-8,64 |
123,6 |
0,3684 |
-8,67 |
118,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
-2 |
0,63 |
0,6310 |
0,5336 |
-5,45 |
107,7 |
0,5304 |
-5,51 |
101,3 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
-1 |
0,8 |
0,7943 |
0,7071 |
-3,01 |
89,36 |
0,7003 |
-3,09 |
81,40 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
0 |
1 |
1,000 |
0,8457 |
-1,46 |
71,00 |
0,8329 |
-1,59 |
42,49 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
1 |
1,25 |
1,259 |
0,9291 |
-0,64 |
54,98 |
0,9071 |
-0,85 |
26,56 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
2 |
1,6 |
1,585 |
0,9699 |
-0,27 |
42,14 |
0,9342 |
-0,59 |
12,83 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
3 |
2 |
1,995 |
0,9877 |
-0,11 |
32,17 |
0,9319 |
-0,61 |
0,5459 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
4 |
2,5 |
2,512 |
0,9950 |
-0,04 |
24,39 |
0,9101 |
-0,82 |
-10,89 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
5 |
3,15 |
3,162 |
0,9980 |
-0,02 |
18,20 |
0,8721 |
-1,19 |
-21,86 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
6 |
4 |
3,981 |
0,9992 |
-0,01 |
13,15 |
0,8184 |
-1,74 |
-32,52 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
7 |
5 |
5,012 |
0,9997 |
0,00 |
8,884 |
0,7498 |
-2,50 |
-42,85 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
8 |
6,3 |
6,310 |
0,9999 |
0,00 |
5,135 |
0,6692 |
-3,49 |
-52,73 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
9 |
8 |
7,943 |
0,9999 |
0,00 |
1,680 |
0,5819 |
-4,70 |
-62,07 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
10 |
10 |
10,00 |
0,9999 |
0,00 |
-1,680 |
0,4941 |
-6,12 |
-70,84 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
11 |
12,5 |
12,59 |
0,9999 |
0,00 |
-5,135 |
0,4114 |
-7,71 |
-79,15 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
12 |
16 |
15,85 |
0,9997 |
0,00 |
-8,884 |
0,3375 |
-9,44 |
-87,25 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
13 |
20 |
19,95 |
0,9992 |
-0,01 |
-13,15 |
0,2738 |
-11,25 |
-95,45 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
14 |
25 |
25,12 |
0,9980 |
-0,02 |
-18,20 |
0,2203 |
-13,14 |
-104,2 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
15 |
31,5 |
31,62 |
0,9950 |
-0,04 |
-24,39 |
0,1760 |
-15,09 |
-114,0 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
16 |
40 |
39,81 |
0,9877 |
-0,11 |
-32,17 |
0,1396 |
-17,10 |
-125,7 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
17 |
50 |
50,12 |
0,9699 |
-0,27 |
-42,14 |
0,1093 |
-19,23 |
-139,8 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
18 |
63 |
63,10 |
0,9291 |
-0,64 |
-54,98 |
0,08336 |
-21,58 |
-156,9 |
+ 12/-11 |
+ 1/-1 |
+ 6/-6 |
19 |
80 |
79,43 |
0,8457 |
-1,46 |
-71,00 |
0,06036 |
-24,38 |
-176,1 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
20 |
100 |
100,0 |
0,7071 |
-3,01 |
-89,36 |
0,04013 |
-27,93 |
-195,1 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
21 |
125 |
125,9 |
0,5336 |
-5,46 |
-107,7 |
0,02407 |
-32,37 |
-211,5 |
+ 26/-21 |
+ 2/-2 |
+12/-12 |
22 |
160 |
158,5 |
0,3699 |
-8,64 |
-123,6 |
0,01326 |
-37,55 |
-224,6 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
23 |
200 |
199,5 |
0,2436 |
-12,27 |
-136,3 |
0,006937 |
-43,18 |
-234,7 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
24 |
250 |
251,2 |
0,1565 |
-16,11 |
-146,0 |
0,003541 |
-49,02 |
-242,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
25 |
315 |
316,2 |
0,09950 |
-20,04 |
-153,4 |
0,001788 |
-54,95 |
-248,3 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
26 |
400 |
398,1 |
0,06297 |
-24,02 |
-159,1 |
0,000899 |
-60,92 |
-252,8 |
+ 26/-100 |
+ 2/- ∞ |
+ ∞/- ∞ |
X - частота, Гц; Y - весовой коэффициент; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 17 - Модуль функции частотной коррекции Wm
X - частота, Гц; Y - фаза, ...°; 1 - полосовой фильтр; 2 - функция частотной коррекции
Рисунок В. 18 - Фаза функции частотной коррекции Wm
С.1 Реализация фильтров в частотной области
С.1.1 Общие положения
Для получения среднеквадратичного значения корректированного ускорения aw могут быть использованы любые методы частотного анализа [аналоговые или цифровые, в реальном масштабе времени, в третьоктавных полосах или с использованием быстрого преобразования Фурье (БПФ)], позволяющие получить среднеквадратичные значения спектральных составляющих ускорения аj для их последующего возведения в квадрат и суммирования с соответствующими весовыми коэффициентами:
(С.1)
где wj - значение функции частотной коррекции на среднегеометрической частоте i-й полосы частот.
Примечание - Анализ вибрации в частотной области нельзя применять для получения значения дозы вибрации VDV. Его нельзя использовать также для получения текущего среднеквадратичного значения корректированного ускорения по данному стандарту, поскольку время интегрирования или постоянная времени интегрирования (1с) сопоставимы с постоянной времени фильтра (величиной, обратно пропорциональной ширине полосы частот).
С.1.2 Анализ в третьоктавных полосах
Значения среднегеометрических частот при третьоктавном анализе - в соответствии с таблицами В.1 - В.9 (приложение В). В диапазон анализа должны входить по крайней мере по одной третьоктавной полосе выше и ниже номинального диапазона, определяемого границами f1 и f2 таблицы 3.
Перед проведением операций возведения в квадрат и суммирования по формуле (С.1) значения ускорения следует умножить на соответствующее значение функции частотной коррекции (см. 5.6 и таблицы В.1 - В.9 приложения В).
С.1.3 Быстрое преобразование Фурье
Среднеквадратичное значение корректированного ускорения может быть получено на основе среднеквадратичных значений составляющих БПФ сигнала вибрации в соответствии с формулой (С.1) или на основе составляющих спектральной плотности мощности PSD в соответствии с формулой (С.2). В каждом из этих случаев весовые коэффициенты (значения функции частотной коррекции) следует рассчитывать по формулам 5.6, а не брать из таблиц приложения В:
(С.2)
При суммировании спектральных составляющих следует принимать во внимание эффект просачивания, связанный с использованным для формирования выборки временным окном. При анализе в широкой полосе частот рассчитанное в соответствии с формулой (С.2) среднеквадратичное значение корректированного ускорения aw следует разделить на коэффициент, соответствующий ширине полосы эквивалентного идеального фильтра, пропускающего белый шум той же мощности (см. таблицу С.1).
Таблица С.1 - Временные оконные функции и соответствующие коэффициенты
Форма окна1) |
Коэффициент |
Типичное применение |
Хэннинг |
1,50 |
Общего применения, нестационарный случайный процесс |
Плосковершинное |
3,77 |
Периодический или синусоидальный сигнал (например, при калибровке) |
1) В других типичных ситуация возможно применение других временных окон. |
БПФ-анализаторы обычно учитывают коэффициент выбранного временного окна по умолчанию.
Разрешение по частоте для БПФ должно быть менее 40 % (предпочтительно 20 %) нижней границы номинального диапазона частот. Частота выборки должна по крайней мере в 5 раз превышать верхнюю границу номинального диапазона частот.
С.2 Реализация фильтров во временной области
С.2.1 Общие положения
Оценка сигналов ускорения с точки зрения их воздействия на человека включает в себя процедуру частотной коррекции с использованием одного из фильтров, описанных в 5.6. При определении среднеквадратичного значения корректированного ускорения процедура умножения на функцию частотной коррекции может быть осуществлена как до интегрирования, так и после вычисления среднеквадратичных значений спектральных составляющих - результат будет одним и тем же. Но для определения таких параметров, как максимальное кратковременное среднеквадратичное значение MTTV [см. формулы (3) и (4)], необходимо измерять максимальное значение текущего среднеквадратичного значения ускорения, что требует выполнения процедуры умножения на функцию частотной коррекции до интегрирования по времени.
Применение при анализе во временной области цифровых фильтров позволяет ограничить использование дорогостоящих и громоздких (особенно в многоканальных системах) аналоговых устройств.
С.2.2 Преобразование из частотного представления во временное
Подобно тому, как для построения аналоговых фильтров в частотной области используется преобразование Лапласа, для цифровой фильтрации часто применяют z-преобразование. Передаточная функция цифрового фильтра может быть представлена в виде его z-преобразования H(z). В z-области преобразование Y(z) выходного сигнала цифрового фильтра связано с z-преобразованием входного сигнала X(z) формулой
Y(z) = H(z)X(z). (C.3)
H(z) может быть представлена в виде
(С.4)
где аi и bi - постоянные коэффициенты;
М и N- число нулей и полюсов фильтра соответственно.
Эквивалентная формула для временной области будет иметь вид:
(С.5)
где х(ti) и y(ti) - выборочные значения входного и выходного сигналов соответственно в момент времени ti.
С.2.3 Расчет коэффициентов фильтра
Коэффициенты фильтра аi и bi могут быть получены методом билинейного преобразования или методом импульсных инвариантов [5]. Метод билинейного преобразования наилучшим образом подходит для фильтров Баттерворта, в частности фильтров верхних и нижних частот, описанных в 5.6; z-преобразование этих двухполюсных фильтров может быть получено из преобразования Лапласа передаточной функции в 5.6 заменой переменной Лапласа s:
(С.6)
где Ts - период выборки.
Аналогичный расчет или альтернативный метод импульсных инвариантов может быть использован для переходных и ступенчатых фильтров.
С.2.4 Применение фильтров
Фильтры с бесконечной импульсной характеристикой по очереди применяют к последовательности оцифрованных данных в порядке их поступления в соответствии с уравнением (С.5).
В качестве примера ниже приведена программа, моделирующая процедуру фильтрации для функции частотной коррекции Wk в кодах MATLAB®, где используют встроенную функцию ‘fillter.m’, а также стандартные функции анализа сигналов ‘butter.m’ и ‘bilinear.m’1).
1) MATLAB® является примером подходящего для использования в данной ситуации коммерческого продукта. Эта информация дана только для удобства пользователей настоящего стандарта. Ее не следует рассматривать как рекламную поддержку данного продукта.
Примечание - Приведенная на рисунке С.1 программа требует, чтобы частота выборки по крайней мере в 9 раз превышала значение верхней частоты диапазона измерений f2 (по таблице 2), чтобы удовлетворить требованиям настоящего стандарта по допуску на функцию частотной коррекции. Требование к частоте выборки можно понизить, если изменить программу соответствующим образом, например использовать преобразование
где fc - частота среза фильтра.
Рисунок С.1 - Пример программы, реализующей фильтр Wk
D.1 Линейное усреднение
Для практической реализации измерения текущего среднеквадратичного значения корректированного ускорения с использованием линейного усреднения [см. формулу (3)] применяют цифровые методы обработки сигнала, позволяющие хранить большие массивы данных (выборочных значений сигнала) - см. рисунок D.1.
k - текущий номер выборки; ∆t - период дискретизации; θ - период интегрирования
Рисунок D.1 - Метод линейного усреднения
D.2 Экспоненциальное усреднение
Метод экспоненциального усреднения [см. формулу (4)] долгое время являлся доминирующим при измерении шума и вибрации, воздействующих на человека. Вначале этот метод был стандартизован для шумомеров (характеристики «медленно» с постоянной времени 1 с и «быстро» с постоянной времени 0,125 с - см. [6]), а потом и для средств измерений вибрации. Экспоненциальное усреднение называют также «экспоненциальным интегрированием». Схема реализации данного метода показана на рисунке D.2.
k - текущий номер выборки; ∆t - период дискретизации; m = 1 - ехр(-∆t/τ); τ - постоянная времени экспоненциального усреднения (интегрирования)
Рисунок D.2 - Метод экспоненциального усреднения
D.3 Сравнение двух методов усреднения
Результаты, полученные с использованием формул (3) и (4), могут существенно различаться. Существует два основных правила обеспечения приблизительной эквивалентности результатов, полученных двумя вышеупомянутыми методами, которые применяют для разных видов измерений и типов вибрационного сигнала.
Правило 1. Для импульсных сигналов (ударов) время интегрирования при линейном усреднении выбирают равным постоянной времени при экспоненциальном усреднении (см. рисунок D.3).
А - экспоненциальное окно; В - прямоугольное окно линейного интегрирования
Рисунок D.3 - Эквивалентное временное окно при измерении максимального кратковременного среднеквадратичного значения для импульсных сигналов
Это обеспечивает наилучшее совпадение результатов измерений максимального кратковременного среднеквадратичного значения, однако и в данном случае возможны значительные расхождения в результатах измерений, которые зависят от длительности и формы импульсного сигнала.
Правило 2. Для случайного сигнала время интегрирования при линейном усреднении выбирают в два раза большим постоянной времени при экспоненциальном усреднении (см. рисунок D.4). Это обеспечивает наилучшее соответствие статистических параметров измерений текущего среднеквадратичного значения корректированного ускорения (дисперсия, доверительный интервал и др.).
А - экспоненциальное окно; В - прямоугольное окно линейного интегрирования; θ - период линейного интегрирования; τ - постоянная времени экспоненциального усреднения
Рисунок D.4 - Эквивалентное временное окно при измерении среднеквадратичного значения или других статистических параметров
То же самое справедливо для последовательности импульсов или периодических сигналов с небольшим шумом, однако при этом в случае линейного усреднения результат может сильно зависеть от соотношения времени интегрирования и периода сигнала.
Е.1 Общие положения
Выбор датчиков вибрации, применяемых в задачах измерения вибрации, воздействующей на человека, зависит от многих факторов, в частности:
- целей применения (измерение локальной, общей и общей низкочастотной вибрации);
- назначения измерений (для оценки влияния вибрации на здоровье, комфорт или оценки чувствительности к вибрации);
- условий окружающей среды (например, температуры воздуха, влажности, запыленности);
- условий крепления (например, крепление на легкие конструкции, крепление в условиях ограниченного пространства для установки датчика).
Характеристики датчиков в настоящем приложении приведены исходя из задачи оценки влияния вибрации на здоровье человека. Для других целей измерения требования к характеристикам могут быть ослаблены или, наоборот, ужесточены.
Примечание - Требования настоящего стандарта установлены исходя из того, что величиной, измеряемой датчиком вибрации, является ускорение. Однако датчики, измеряющие другие параметры движения, в частности скорость, также могут быть использованы при условии удовлетворения установленных требований. При этом требования испытаний с использованием тестовых электрических сигналов должны быть соответствующим образом изменены.
Е.2 Характеристики
Рекомендуемые минимальные характеристики датчиков вибрации приведены в таблице Е.1 (могут быть применены не во всех случаях).
Таблица Е.1 - Характеристики датчика вибрации в зависимости от применения
Параметр |
Общие рекомендации исходя из влияния на неопределенность измерений |
Применение |
|||
Локальная вибрация |
Общая вибрация |
Общая низкочастотная вибрация |
|||
на транспорте |
внутри помещений |
||||
Максимальная общая масса (всех датчиков и системы крепления) |
Менее 10 % эффективной массы вибрирующей конструкции |
30 г |
450 г на сиденье |
1 кг |
1 кг |
Максимальная масса датчика |
- |
5 г |
50 г |
200 г |
200 г |
Максимальный общий размер (всех датчиков и системы крепления) |
Небольшой, чтобы оказывать минимальное влияние на деятельность человека |
Кубик размером 25 мм |
На сиденье: полужесткий диск (см. F.2) диаметром 300 мм и высотой 12 мм В других местах: кубик размером 30 мм |
200×200×50 мм |
200×200×100 мм |
Максимальная высота |
Расстояние между измерительной осью датчика параллельной вибрирующей поверхности и самой этой поверхностью должно быть мало, чтобы избежать усиления угловых составляющих ускорения |
10 мм |
10 мм |
25 мм |
25 мм |
Диапазон температур |
- |
От -10°С |
От -10°С |
От -10°С |
От -10°С |
Чувствительность к электромагнитным полям (30 мТл на частоте 50 или 60 Гц) |
|
Менее 30 м/с2/Тл |
Менее 5 м/с2/Тл |
Менее 2 м/с2/Тл |
Менее 2 м/с2/Тл |
Чувствительность к акустическому давлению |
- |
Менее 0,05 м/с2/кПа |
Менее 0,01 м/с2/кПа |
Менее 0,01 м/с2/кПа |
Менее 0,01 м/с2/кПа |
Коэффициент преобразования в поперечном направлении |
- |
Менее 5 % |
Менее 5 % |
Менее 5 % |
Менее 5 % |
Максимальное ускорение |
Датчик должен выдерживать высокие ударные ускорения, которым он может быть подвергнут во время эксплуатации, с сохранением заданной точности измерений в заданном диапазоне частот |
30000 м/с2 (в отдельных случаях, например, при измерении вибрации пневматических молотков) до 50000 м/с2) |
1000 м/с2 |
500 м/с2 |
500 м/с2 |
Минимальная резонансная частота |
Примерно в 10 раз выше верхней границы номинального диапазона частот |
10 кГц |
800 Гц |
800 Гц |
5 Гц |
Минимальная защита оболочками |
Для защиты от воздействия влаги и пыли (в зависимости от конкретного применения - измерения в лабораторных условиях, во взрывоопасных средах и пр. - могут быть установлены другие требования к оболочкам) |
IP55 |
IP55 |
- |
IP55 |
F.1 Измерения локальной вибрации
F.1.1 Введение
Система крепления, используемая при измерениях локальной вибрации, должна иметь малую массу и размеры и высокую жесткость, чтобы выходной сигнал датчика вибрации как можно более точно воспроизводил ускорение вибрирующей поверхности.
В настоящем приложении приведены основные методы испытаний систем крепления однокомпонентного и трехкомпонентного датчиков вибрации.
F.1.2 Требования
F.1.2.1 Метод испытаний
Во время испытаний акселерометр устанавливают так, как показано на рисунке F.1. Эталонный акселерометр должен удовлетворять всем требованиям настоящего стандарта. Испытанию подвергают систему крепления и акселерометр, которые предназначены для использования в составе средства измерений, проверяемого на соответствие требованиям настоящего стандарта.
Для испытаний используют жесткие рукоятки в форме цилиндра диаметром
Если конструкция системы крепления предполагает ее фиксацию на месте кистью руки, то она должна быть испытана в таких же условиях при больших и меньших усилиях нажатия. Если в технической документации указаны дополнительные устройства фиксации, их следует применять в процессе испытаний.
Примечание - Желательно усилие нажатия измерять и контролировать в ходе испытаний. Изменение усилия нажатия в ходе испытаний может оказать влияние на передаточную характеристику системы крепления.
Рукоятку возбуждают однонаправленной вибрацией в форме белого шума как показано на рисунке F.1. Диапазон частот вибрации - не менее чем от 31,5 до 1250 Гц; среднеквадратичное значение корректированного по характеристике Wh ускорения - 10 м/с2. Допуск на форму спектра сигнала, измеренного в контрольной точке испытуемой рукоятки, - ±20 %.
а) Установка датчиков для измерений вдоль оси х
Рисунок F.1 - Установка датчиков вибрации, лист 1
с) Установка датчиков для измерений вдоль оси z
1 - ось действия вибрации; 2 - испытуемый акселерометр; 3 - испытуемая система крепления; 4 - рукоятка; 5 - эталонный акселерометр
Рисунок F.1, лист 2
Выходные сигналы с эталонного и испытуемого акселерометров поступают на вход двухканального анализатора. Разрешение по частоте - не менее 8 Гц; диапазон анализа - не менее чем от 31,5 до 1250 Гц (дополнительная информация об измерениях в узкой полосе частот приведена в приложении С).
Измерения повторяют три раза в течение не менее 30 с каждое. Между измерениями систему крепления снимают и устанавливают заново.
В процессе измерений определяют передаточную функцию между сигналами эталонного и испытуемого акселерометров, которая не должна отличаться от единицы более чем на ± 15 % во всем диапазоне частот измерений. Кроме этого, измеряют функцию когерентности, значение которой на всех частотах от 31,5 до 1250 Гц должно быть выше 0,8.
При отсутствии двухканального анализатора следует провести одновременные измерения спектров сигналов с эталонного и испытуемого акселерометров. На всех частотах от 31,5 до 1250 Гц спектр испытуемого акселерометра не должен отличаться от спектра эталонного акселерометра более чем на 15 %.
По возможности рекомендуется провести предварительные испытания испытуемого акселерометра, установив его жестко на рукоятке, например с помощью шпильки или клея, т.е. без использования системы крепления. Эти дополнительные испытания позволят получить некоторые базовые данные, с которыми впоследствии можно сравнить окончательные результаты испытаний.
F. 1.2.2 Представление результатов
Техническая документация должна содержать следующие данные:
- тип и серийный номер эталонного датчика вибрации;
- разрешение по частоте частотного анализа;
- максимальное отклонение от эталонного спектра в контрольной точке (в процентах) и частота, на которой это отклонение имеет место для испытаний по каждому из направлений возбуждения вибрации х, у и z.
Дополнительно может быть представлена распечатка передаточной функции, полученной в результате испытаний.
F.2 Измерения общей вибрации
Один из методов крепления датчика вибрации для измерений общей вибрации на подушке или спинке сиденья транспортного средства установлен в [7].
Согласно этому методу акселерометр крепят в центре установочного диска диаметром (250 ± 50) мм. Толщина диска должна быть, по возможности, минимальна, а высота не превышать
G.1 Общая информация
Приводят следующую информацию:
- ссылку на настоящий стандарт;
- дату калибровки средства измерений с указанием метода сопоставления с метрологическими эталонами;
- описание всего средства измерений в той конфигурации, которая обеспечивает нормальный режим работы, включая, если это необходимо, расширительные кабели, систему крепления, механический фильтр и другие устройства;
- описание акселерометра (акселерометров), рекомендуемого (рекомендуемых) для использования в составе средства измерений;
- описание характеристик и способов работы каждого канала многоканального средства измерений;
- перечень дополнительных средств, которые могут потребоваться, чтобы средство измерений соответствовало установленным требованиям (например, механические фильтры, системы крепления или кабели, программные средства);
- перечень дополнительных средств, которые могут быть использованы в специальных задачах и при особых обстоятельствах (например, средства крепления или датчики для проведения измерений в условиях сильных ударов).
G.2 Особенности конструкции
Приводят следующую информацию:
- описание величин, которые могут быть измерены с помощью средства измерений (среднеквадратичное значение корректированного ускорения, текущее среднеквадратичное значение корректированного ускорения, доза вибрации и др.) по отдельности или в совокупности;
- описание применяемых функций частотной коррекции и соответствующих полосовых фильтров;
- описание метода или методов, используемых для объединения данных, включая указание используемых функций частотной коррекции и соответствующих коэффициентов для разных направлений (в случае проведения измерений по нескольким направлениям);
- сведения о дополнительно реализованных в средстве измерений функциях частотной коррекции и передаточных характеристиках соответствующих фильтров, требования к которым не установлены настоящим стандартом, с указанием их назначения, а также о допусках на эти величины;
- описание используемых при интегрировании сигнала временных окон;
- описание диапазонов измерений и способа контроля используемого диапазона измерений;
- описание всех показывающих устройств, в том числе описание режима работы цифровых дисплеев и способа идентификации измеренной величины. При наличии нескольких показывающих устройств должно быть указано, какие из них работают в соответствии с требованиями настоящего стандарта, а какие предназначены для других целей.
Примечание - Устройства выхода по постоянному или переменному току, а также цифровые выходы не следует рассматривать как показывающие устройства;
- описание нормального режима работы всего средства измерений в целом;
- перечень дополнительных устройств в составе средства измерений, требования к которым установлены настоящим стандартом;
- значения номинальных параметров вибрации на верхней и нижней границах рабочего диапазона линейности на опорной частоте для каждого диапазона измерений;
- значения нижней и верхней границ диапазона ускорений, которые могут быть измерены данным средством измерений, как функции частоты для каждой используемой функции частотной коррекции и пределы допуска на эти значения;
- описание работы в режиме удержания пикового значения и способа обновления показаний;
- описание процедуры приведения средства измерений в состояние готовности (переустановки) для измерения среднеквадратичного значения корректированного ускорения, пикового значения, дозы вибрации, максимального кратковременного среднеквадратичного значения. Указание, происходит ли при выполнении данной процедуры сброс показания индикатора перегрузки. Значение номинальной временной задержки между началом процедуры переустановки и началом периода измерений;
- описание работы и способа интерпретации показаний индикаторов перегрузки и нечувствительности по входу и метода сброса их показаний;
- указание программного средства, необходимого для работы средства измерений, и описание процедур его установки и использования;
- указание версии внешнего программного средства или встроенного аппаратного средства, необходимого для выполнения установленных требований.
G.3 Коэффициент преобразования
Приводят следующую информацию:
- описание вибрационного калибратора или калибраторов, которые могут быть использованы для определения коэффициента преобразования измерительной цепи средства измерений;
- опорную частоту (частоты);
- рекомендуемые методы контроля и регулировки коэффициента преобразования измерительной цепи с использованием опорного сигнала на опорной частоте в опорном диапазоне измерений;
- предполагаемую скорость дрейфа значения коэффициента преобразования в нормальных рабочих условиях;
- процедуру контроля на рабочем месте (см. раздел 13).
G.4 Чувствительность к изменению внешних факторов
Приводят следующую информацию:
- процедуры коррекции результатов измерений в условиях температуры и влажности воздуха, отличающихся от нормальных;
- перечень элементов средства измерений, удовлетворяющих соответствующим требованиям настоящего стандарта по чувствительности к изменению внешних условий;
- интервал времени, необходимый для стабилизации работы средства измерений после изменения внешних условий;
- описание влияния электростатических разрядов на работу средства измерений. Указание на возможные нарушения в работе или ухудшение качества работы в результате воздействия электростатических разрядов. Для средств измерений, требующих от пользователя доступа к некоторым точкам внутри измерительного блока во время технического обслуживания, - меры предосторожности, если необходимо, которые следует применять для защиты от электростатических разрядов;
- подтверждение того факта, что средство измерений удовлетворяет основным требованиям настоящего стандарта по устойчивости к воздействию радиочастотного электромагнитного поля и помех сетевой частоты;
- рекомендуемую длину соединительных кабелей, если предусмотрено их использование с данным средством измерений, и устройства, подсоединяемые этими кабелями;
- режим(ы) работы средства измерений и присоединенных устройств, при котором(ых) устойчивость к воздействию радиочастотного электромагнитного поля и помех сетевой частоты минимальна;
- ориентацию средства измерений, при которой его чувствительность к помехам сетевой частоты максимальна;
- указание на соответствие требованиям по излучению в области радиочастот.
G.5 Питание
Приводят следующую информацию:
- рекомендации по типу батареи, номинальной длительности ее работы в нормальных условиях при полной зарядке (для средства измерений с собственными батареями питания);
- описание рекомендуемого метода контроля работы системы питания;
- рекомендуемые условия работы средства измерений от внешнего источника питания (для средства измерений с питанием от батарей);
- значение номинального напряжения сети и частоты переменного тока (для средства измерений, предназначенного для работы от сети переменного тока).
G.6 Датчик вибрации
Приводят следующую информацию:
- частотную характеристику датчика вибрации (реальную для данного датчика или типичную для данной модели);
- массы датчика вибрации и прилагаемого устройства (устройств) крепления;
- геометрические размеры датчиков вибрации и устройств крепления;
- направление осей чувствительности датчика вибрации относительно точки крепления;
- рабочий диапазон температур и чувствительность к температуре;
- чувствительность к электромагнитным полям;
- чувствительность к акустическому давлению;
- коэффициент преобразования в поперечном направлении;
- максимально допустимое ускорение;
- резонансную частоту;
- устойчивость к влаге и пыли.
G.7 Дополнительные приспособления
Приводят следующую информацию:
- поправки, которые необходимо внести в результаты измерений в случае использования дополнительных кабелей между акселерометром и измерительным блоком;
- диапазон среднеквадратичных значений выходного синусоидального напряжения, внутренний электрический импеданс выходного устройства, рекомендуемый диапазон импедансов нагрузок и пределы допуска для выходного сигнала (для аналогового выходного сигнала);
- способ использования средства измерений при наличии внешних фильтров;
- способ подсоединения вспомогательных устройств и об их влиянии на электрические характеристики средства измерений;
- рекомендуемую длину соединительных кабелей и описание возможных присоединяемых устройств (для средств измерений, допускающих соединение кабелями отдельных элементов или присоединение с их помощью внешних устройств).
G.8 Работа средства измерений
Приводят следующую информацию:
- время установления режима измерений после включения средства измерений, когда оно может быть использовано для измерения вибрации в типичных условиях окружающей среды;
- временной интервал между окончанием измерений и появлением результатов измерений на показывающем устройстве;
- максимальный и минимальный периоды интегрирования сигнала;
- описание способа установки периода интегрирования;
- описание рекомендуемого метода передачи или загрузки оцифрованных данных на внешнее средство хранения или показывающее устройство с указанием программного и аппаратурного обеспечения, позволяющего выполнять указанные операции;
- типичные значения внутреннего шума измерительной цепи, включающего в себя датчик вибрации и измерительный блок, в форме среднеквадратичного значения корректированного ускорения для заданного периода интегрирования для всех функций частотной коррекции, реализуемых данным средством измерений (по крайней мере, для нормальных внешних условий).
G.9 Дополнительная информация для проведения испытаний средства измерений
Приводят следующую информацию:
- рекомендации по процедурам и методам проведения испытаний, демонстрирующих соответствие требованиям настоящего стандарта или технической документации (для процедур, не рассматриваемых в настоящем стандарте);
- указание опорного диапазона измерений и значения его нижней границы;
- значение эквивалентного электрического импеданса акселерометра (акселерометров). Рекомендуемые средства для получения входного электрического сигнала, эквивалентного сигналу с акселерометра. Описание устройства формирования электрического сигнала;
- значение максимального ускорения, воздействующего на акселерометр, и максимального размаха напряжения электрического сигнала;
- минимальное напряжение питания, позволяющее средству измерений работать в соответствии с требованиями настоящего стандарта;
- описание ориентации средства измерений при проведении испытаний на воздействие радиочастотных электромагнитных полей;
- описание режима или режимов работы средства измерений и любых подсоединенных устройств, при которых уровень радиочастотного излучения максимален. Перечень конфигураций средства измерений, для которых уровень радиочастотного излучения будет таким же или меньшим;
- описание влияния изменения температуры воздуха на коэффициент преобразования измерительной цепи средства измерений.
Н.1 Общие положения
Требования к точности воспроизведения заданной фазочастотной (фазовой) характеристики устанавливают при измерении таких параметров вибрации, как пиковое значение, доза вибрации и максимальное кратковременное среднеквадратичное значение, которые чувствительны к погрешности преобразования фазы сигнала. В настоящем приложении рассмотрены проблемы, которые могут возникнуть из-за отклонений номинальной фазочастотной характеристики средства измерений от заданной при измерении вышеуказанных параметров, а также установлены методы испытаний для оценки этих отклонений.
Примечание - В 5.9 установлены требования к результатам измерений пиковых значений и других параметров вибрации в ответ на сигнальную посылку с пилообразным заполнением импульса. Данные измерения чувствительны к отклонениям в фазочастотной характеристике функции частотной коррекции, поскольку сигнальная посылка сформирована таким образом, что содержит несколько гармонических составляющих. Это, тем не менее, не обеспечивает проверки фазочастотной характеристики во всем диапазоне частот.
Комплексная функция частотной коррекции определена в 5.6 таким образом, чтобы она могла быть реализована совокупностью простых аналоговых фильтров. Если средство измерений осуществляет цифровое преобразование сигнала, требуемая точность реализации фазочастотной характеристики может быть обеспечена применением рекурсивных цифровых фильтров при достаточно высокой частоте выборки. Однако для средств измерений, использующих нерекурсивные (трансверсальные) цифровые фильтры (например, фильтр с идеальной фазовой характеристикой) или осуществляющих частотную коррекцию сигнала посредством частотного анализа (с использованием полосовых фильтров или различных реализаций преобразований Фурье), ошибки в измерении чувствительных к погрешности преобразования фазы параметров сигнала могут быть весьма значительны.
Н.2 Определение и оценка фазочастотной характеристики
Н.2.1 Общие положения
Измерительная цепь средства измерений должна быть реализована таким образом, чтобы удовлетворять формулам (8) - (12). При этом фазочастотная характеристика определяется формулой
(Н.1)
где H(s) - передаточная функция по формуле (12). Значения фазового угла φ приведены в таблицах В.1 - В.9 приложения В.
Номинальную фазовую характеристику измерительной цепи необходимо сравнить с заданной фазовой характеристикой. Однако погрешности измерений, связанные с отклонением фазовой характеристики, не имеют простой связи с разностью номинальной и заданной фазовых характеристик. Большое значение имеет то, как эта разность изменяется с изменением частоты. В связи с этим задают такой параметр, как характеристическая фазовая девиация ∆φ0. Его определяют исходя из отклонения номинальной фазовой характеристики от заданной по формуле
(Н.2)
где f - частота;
∆φ(f)- отклонение фазовой характеристики;
∆φ'(f) - первая производная отклонения фазовой характеристики по частоте (наклон кривой отклонения фазовой характеристики).
Введение нового параметра объясняется тем, что, если бы допуск был задан на отклонение фазовой характеристики ∆φ(f) , то для достижения заданной точности измерений параметров вибрации коридор между границами допуска пришлось бы делать очень узким. Задание допуска на параметр ∆φ0 предполагает большую вариативность ∆φ(f) при сохранении той же точности измерений.
Примечание - Если бы допуск был задан на отклонения фазовой характеристики, то при постоянстве для всего диапазона частот группового времени задержки (т.е. когда отклонение фазовой характеристики пропорционально частоте), этот допуск с большой вероятностью может быть превышен, тогда как значения измеряемых параметров вибрации и характеристическая фазовая девиация оставались неизменными. И наоборот, если групповое время задержки зависит от частоты, это может существенно повлиять на точность измерения таких параметров вибрации, как, например, пиковое ускорение, в то время как отклонения фазовой характеристики останутся в пределах допуска.
Для практических целей достаточно определить ∆φ0(f)для отдельных частот fn с шагом, предпочтительно, треть октавы. При этом уравнение (Н.2) приближенно может быть записано в следующем виде [см. также уравнение (13)]:
(Н.3)
Данная формула позволяет вычислять характеристическую фазовую девиацию ∆φ0 для всех частот fn, за исключением наивысшей частоты диапазона.
Допуски на характеристическую фазовую девиацию определены в таблице 5 и табулированы в таблицах В.1 - В.9 приложения В.
Вероятная максимальная погрешность измерения пикового значения ∆PVmax, обусловленная отклонением фазовой характеристики, может быть приближенно определена по формуле
∆PVmax ≈ ± max{0,48 sin[∆φ0(fn)]} 100 %. (Н.4)
Для максимально допустимого значения характеристической фазовой девиации 12° максимальная погрешность измерения пикового значения составит приблизительно 10 %.
Примечание - Формула (Н.4) получена расчетным путем и применима только к малым значениям ∆φ0 (менее 30°). Реальная погрешность измерения пикового значения зависит от формы входного сигнала и, как правило, меньше значения ∆РVmах, которое было получено для наихудшего случая сочетания во входном сигнале двух синусоидальных составляющих. Однако если входной сигнал содержит большее число составляющих, то возможны (хотя и маловероятны) такие сочетания, которые дадут значение погрешности, превышающее ∆PVmax. Поэтому со статистической точки зрения выражение «максимальная погрешность» следует трактовать как квантиль распределения малого уровня. Хотя изначально расчетный метод был ориентирован на оценку пикового значения, его можно в качестве первого приближения принять для оценки измерения дозы вибрации.
В настоящем приложении установлены два метода, которые позволяют проверить соответствие характеристической фазовой девиации заданным требованиям: прямой и косвенный.
Н.2.2 Прямой метод
Данный метод требует выполнения двух условий:
- доступности сигнала, прошедшего процедуру частотной коррекции (в аналоговом или цифровом виде), перед тем как сигнал поступит в блок преобразования для выделения искомого параметра вибрации;
- незначительности фазовых искажений, вносимых при последующих преобразованиях этого сигнала.
Оценку фазовой характеристики проводят в соответствии с ИСО 16063-21 с помощью эталонного акселерометра с калиброванной фазовой характеристикой. Фазовая характеристика эталонного акселерометра может быть калибрована по ИСО 16063-11 или ИСО 16063-12.
Н.2.3 Косвенный метод
Н.2.3.1 Условия применения метода
Данный метод, использующий в качестве тестового сигнала сочетание двух синусоид (двухтональный сигнал), рекомендуется применять для измерений пикового значения вибрации, если сигнал, прошедший процедуру частотной коррекции, недоступен.
Н.2.3.2 Принцип испытаний с использованием двухтонального тестового сигнала
Двухтональную вибрацию с параметрами ffu, rfu, φfu и fha, rha, φha (где f - частота, r - с.к.з.; φ - начальная фаза синусоидального сигнала, а подстрочные индексы fu и ha обозначают сигнал основного тона и его гармонику соответственно) воспроизводят и передают на средство измерений с помощью вибростенда. Параметры вибрации ffu, rfu, fha и rha задают таким образом, чтобы пиковое значение сигнала было максимально чувствительно к небольшим отклонениям фазовой характеристики измерительной цепи. Это требование выполняется при одновременном соблюдении следующих условий: ffu/fha = 3 и rfu/rha = 3.
При варьировании начальной фазы гармоники φhа пиковое значение проходит через относительно острый минимум в точке φha = 3 φfu, когда «горбы» основного тона и гармоники находятся в противофазе. Эту точку можно найти, используя фазосдвигающее устройство и наблюдая измеренное пиковое значение на показывающем устройстве. Минимальное пиковое значение равно 0,943 rfu.
Вблизи этого минимума погрешность определения пикового значения вследствие отклонения фазовой характеристики максимальна и достигает 1,75 %/°.
На рисунке Н.1 показаны формы сигналов при φhа = 15° и φfu = 0°, а на рисунке Н.2 показан график зависимости пикового значения от φhа при φfu = 0°.
Метод дает также выражение для диапазона изменений погрешности измерения пикового значения вибрации вследствие отклонения фазовой характеристики измерительной цепи для данного тестового сигнала.
В случае произвольного тестового сигнала указанная погрешность может быть меньше (те же две синусоиды, но с другим соотношением амплитуд и частот) или больше (сигнал с крутым фронтом или кратковременный импульс).
X - фаза основного тона, ...°; Y - значение сигнала; 1 - основной тон; 2 - гармоника (начальная фаза сдвинута на 15°); 3 - результирующий сигнал
Рисунок Н.1 - Формы сигналов
X - фазовый сдвиг гармоники,...°; Y - значение параметра вибрации; 1 - пиковое значение, м/с2; 2 -доза вибрации, м/с1,75; 3 - с.к.з., м/с2
Рисунок Н.2 - Зависимость пикового значения и дозы вибрации от фазового сдвига гармоники
Н.2.3.3 Испытательное оборудование
Большая часть оборудования, необходимая для проведения испытания с воспроизведением двухтональной вибрации, - та же, что используют для калибровки частотной характеристики измерительной цепи. В состав испытательного оборудования входят:
a) генератор гармоник (или двухтональный генератор) с регулируемым соотношением параметров гармоник [по крайней мере, обеспечивающий воспроизведение сигнала основной частоты и его третью гармонику) или генератор синусоидального сигнала в сочетании с умножителем (делителем) частоты];
b) если генератор не обеспечивает настройку амплитуд и начальных фаз гармоник, в состав испытательного оборудования дополнительно включают:
- два усилителя с регулируемыми коэффициентами усиления,
- фазовращатель (фазосдвигающий мост, линию задержки);
c) устройство суммирования (суммирующий усилитель), если оно не является составной частью другого используемого в испытаниях оборудования;
d) вибростенд с усилителем мощности;
e) эталонный акселерометр с калиброванными амплитудно-частотной и фазочастотной характеристиками;
f) фазометр, позволяющий измерять сдвиг фаз между гармониками;
g) испытуемое средство измерений.
Блок-схема испытательной установки показана на рисунке Н.3.
Для автоматизации процедуры испытаний рекомендуется применять управление испытательным оборудованием от персонального компьютера.
1 - генератор двухканального сигнала с контролируемым сдвигом фаз; 2 - усилитель с регулируемым коэффициентом усиления; 3 - фазовращатель; 4 - фазометр; 5 - сумматор с усилителем мощности; 6 - датчик вибрации испытуемого средства измерений; 7 - эталонный акселерометр; 8 - вибростенд; 9 - измерительный блок испытуемого средства измерений
Рисунок Н.3 - Блок-схема испытательной установки
Н.2.3.4 Метод испытаний
Средство измерений настраивают на показание пикового значения корректированного ускорения, после чего выполняют последовательность операций:
a) регулируют частоты сигналов, воспроизводимые генератором, таким образом, чтобы они находились в середине диапазона частот испытаний (например, для измерений общей вибрации устанавливают ffu = 9 Гц, fhа = 27 Гц);
b) при включенном канале основной частоты (Sfu) и отключенном канале гармоники (Sha) регулируют коэффициент усиления усилителя Afu таким образом, чтобы результат измерения пикового значения aреак,fu находился в области 60 % диапазона шкалы средства измерений. Считывают показание фазометра (значение φfu);
c) при отключенном канале основной частоты (Sfu) и включенном канале гармоники (Sha) регулируют коэффициент усиления усилителя Aha таким образом, чтобы измеренное средством измерений пиковое значение составляло одну треть измеренного значения aреак,fu, т.е. aреак,ha = aреак,fu/3. Настраивают фазовращатель таким образом, чтобы показания фазометра оставались теми же, что и в шаге b), с коррекцией на время задержки сигнала от эталонного акселерометра. Тогда фазометр будет показывать следующую величину:
где - сдвиг фазы эталонного акселерометра на частоте ffu;
- сдвиг фазы эталонного акселерометра на частоте fha;
fha/ffu - коэффициент преобразования .
Такая регулировка позволит обеспечивать равенство начальных фаз основного сигнала и его гармоники при их совместном воспроизведении на вибростоле.
Примечания
1 Предполагается, что фазовый сдвиг привязан к фазе основного тона. Поэтому значение должно быть умножено на коэффициент fha/ffu. Возможен другой вариант, когда делением на 2πf все фазы преобразуют в значения запаздывания по фазе и сравнивают эти значения. В этом случае фазометр следует настроить так, чтобы он показывал непосредственно значение запаздывания по фазе.
2 Фазовращатель может влиять на амплитуду сигнала и, наоборот, амплитуда сигнала может влиять на значение сдвига. Поэтому следует убедиться в наличии или отсутствии такого влияния и, при необходимости, выполнить соответствующую регулировку. Небольшие изменения амплитуды не будут оказывать существенных влияний на измерения фазы;
d) при включенных каналах Sfu и Sha настроить фазовращатель таким образом, чтобы показываемое средством измерений пиковое значение ускорения было минимальным.
Это означает, что сигнал основной частоты и его третья гармоника поступили на устройство измерения пикового значения ускорения с нулевыми начальными фазами.
Для проверки этого условия следует считать полученное минимальное пиковое значение, которое должно быть равно 0,943 rfu. Изменяя настройку фазовращателя, получают максимальное пиковое значение, равное 1,333 rfu, на показывающем устройстве. После этого возвращают фазовращатель в состояние, когда показываемое пиковое значение минимально;
e) при включенных каналах Sfu и Sha считать на фазометре значение φha+. Рассчитать дополнительный фазовый сдвиг, внесенный фазовращателем при выполнении шага d):
∆φ = φha+ - φha.
После этого рассчитать значение ∆θ:
Эта величина равна разности запаздываний по фазе, вносимых измерительной цепью, на частотах ffu и fha;
f) повторить шаги b) - е), увеличивая (уменьшая) значения частоты основного тона и гармоники в три раза до тех пор, пока не будет пройден весь диапазон измерений, установленный настоящим стандартом (например, для измерений общей вибрации пары частот основного тона и гармоники будут иметь вид: 1 и 3 Гц, 3 и 9 Гц, 9 и 27 Гц, 27 и 81 Гц);
g) построить последовательность, в которой первый член будет представлять собой значение ∆θ для основного тона низшей частоты, а каждый последующий (соответствующий более высокому тону) - сумму предыдущего члена и значения ∆θ для данного тона. Полученная последовательность будет представлять собой выборочные значения непрерывной зависимости запаздывания по фазе от частоты, известные с точностью до некоторой постоянной составляющей (запаздывания по фазе для основного тона низшей частоты);
h) чтобы получить значения зависимости на промежуточных частотах, изменить значения частот на коэффициент 30,2 (соответствует 95 % трети октавы) и повторить шаги b) - е);
i) повторить шаг h) четыре раза, каждый раз получая новую последовательность выборочных значений. Объединить все пять последовательностей выборочных значений в одну общую последовательность. При этом значения аргументов (частот) будут равноудалены друг от друга на логарифмической шкале. Соответствующие задержки по фазе, отложенные по оси ординат (также в логарифмическом масштабе), будут осциллировать относительно некоторой гладкой кривой, что обусловлено разными значениями неизвестного запаздывания по фазе для основного тона низшей частоты для каждой из пяти последовательностей;
j) сгладить полученные выборочные значения непрерывной кривой, зафиксировав первую точку сформированной общей последовательности [значение запаздывания по фазе для основного тона низшей частоты первой последовательности, полученной в результате выполнения шага f)] и подбирая соответствующим образом значения запаздывания по фазе для основных тонов низшей частоты других четырех последовательностей [полученных в результате выполнения шага h)], например с помощью рекуррентной процедуры или графическим методом. Тогда экспериментально полученная зависимость запаздывания по фазе от частоты будет определена с точностью до некоторого постоянного слагаемого;
k) исходя из фазовой характеристики для данной функции частотной коррекции, установленной настоящим стандартом, рассчитать зависимость запаздывания по фазе от частоты. Для этого значения фазы, определенные в соответствующей таблице (В.1 - В.9 приложения В), надо уменьшить на 180°, разделить на 360° и разделить на значение частоты в герцах. Вычитание фазового угла 180° (инверсия частот сигнала) представляет собой приведение к основной ветви функции арктангенса (в таблицах В.1 - В.9 и в соответствующих им рисунках зависимости фазы функции частотной коррекции от частоты этот угол был, наоборот, добавлен) и необходимо для того, чтобы значения запаздывания по фазе от частоты лежали в положительной области.
Примечание - Сдвиг всех частотных составляющих на 180° оставляет форму сигнала неизменной, но существенно изменяет значение характеристической фазовой девиации ∆φ0. В этом нет никакого противоречия, поскольку параметр ∆φ0 введен исключительно с целью оценить допустимость отклонения фазовой характеристики от заданной и не должен являться инвариантом к изменению полярности сигнала. Инверсия частот - особая форма преобразования сигнала, которая может потребовать применения специальных методов испытаний, например при измерении параметров вибрации, чувствительных к направлению, таких как максимальное или минимальное значение ускорения или спектр отклика, однако эти измерения настоящий стандарт не рассматривает;
l) подогнать экспериментальную зависимость под теоретическую, полученную на шаге k), соответствующим выбором постоянной составляющей. Обычно это не составляет труда, поскольку типичная фазовая характеристика, приведенная к логарифмическому масштабу по обеим осям, близка к линейной в широком диапазоне частот. Это справедливо для всех функций частотной коррекции, рассматриваемых настоящим стандартом;
m) преобразовать полученную после выполнения шага l) экспериментальную зависимость запаздывания по фазе обратно в фазовую область, умножая сначала на 360°, а потом на значение частоты, что дает в результате оценку фазовой характеристики данной измерительной цепи средства измерений;
n) по результатам шага m) рассчитать характеристическую фазовую девиацию ∆φ0, как указано в Н.2.2. Критерий на основе ∆φ0 инвариантен по отношению к постоянному значению запаздывания по фазе, поэтому погрешности определения данного параметра не скажутся на результатах применения критерия.
Таблица J.1
Обозначение ссылочного международного стандарта |
Обозначение и наименование соответствующего межгосударственного стандарта |
ИСО 2041:1990 |
Вибрация. Термины и определения (NEQ) |
ИСО 2631-1:1997 |
ГОСТ 31191.1-2004 (ИСО 2631-1:1997) Вибрация и удар. Измерение общей вибрации и оценка ее воздействия на человека. Часть 1. Общие требования (MOD) |
ИСО 2631-2:2003 |
ГОСТ 31191.2-2004 (ИСО 2631-2:2003) Вибрация и удар. Измерение общей вибрации и оценка ее воздействия на человека. Часть 2. Вибрация внутри зданий (MOD) |
ИСО 2631-4:2001 |
ГОСТ 31191.4-2006 (ИСО 2631-4:2001) Вибрация и удар. Измерение общей вибрации и оценка ее воздействия на человека. Часть 4. Руководство по оценке влияния вибрации на комфорт пассажиров и бригады рельсового транспортного средства (MOD) |
ИСО 5347 (все части) |
** |
ИСО 5348:1998 |
ГОСТ ИСО 5348-2002 Вибрация и удар. Механическое крепление акселерометров (IDT) |
ИСО 5349-1:2001 |
ГОСТ 31192.1-2004 (ИСО 5349-1:2001) Вибрация. Измерение локальной вибрации и оценка ее воздействия на человека. Часть 1. Общие требования (MOD) |
ИСО 16063 (все части) |
** |
МЭК 61000-4-2:2001 |
** |
МЭК 61000-4-3:2002 |
** |
МЭК 61000-4-6:2004 |
** |
МЭК 61000-6-2:2005 |
** |
МЭК 61260:1995 |
ГОСТ 17168-82* Фильтры электронные октавные и третьоктавные. Общие технические требования и методы испытаний (NEQ) |
CISPR 22:2003 |
** |
GUM |
** |
* Соответствующий межгосударственный стандарт является неэквивалентным по отношению к его международному аналогу, поэтому рекомендуется вместе с межгосударственным стандартом использовать перевод соответствующего международного стандарта на русский язык. ** Соответствующий национальный или межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод данного международного стандарта на русский язык. |
[1] ИСО 1683:1983 |
Акустика. Предпочтительные опорные значения для определения уровней акустических величин |
(ISO 1683:1983) |
(Acoustics - Preferred reference quantities for acoustic levels) |
[2] CISPR 16-1-1:2006 |
Технические требования к аппаратуре для измерения радиопомех и помехозащищенности и методы измерений. Часть 1-1. Аппаратура для измерения радиопомех и помехозащищенности. Измерительная аппаратура (Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus) |
[3] МЭК 60529:2001 |
Степени защиты, обеспечиваемые оболочками (Код IP) |
(IEC 60529:2001) |
(Degrees of protection provided by enclosures (IP Code)) |
[4] МЭК 61260:1995 |
Электроакустика. Фильтры с полосой пропускания в одну октаву и доли октавы |
(IEC 61260:1995) |
(Electroacoustics - Octave-band and fractional-octave-band filters) |
Digital filter design, John |
|
[6] МЭК 61672-1:2002 |
Электроакустика. Шумомеры. Часть 1. Технические требования |
(IEC 61672-1:2002) |
(Electroacoustics - Sound level meters - Part 1: Specifications) |
[7] ИСO 10326-1:1992 |
Вибрация. Лабораторный метод оценки вибрации транспортных средств. Часть 1. Основные требования |
(ISO 10326-1:1992) |
(Mechanical vibration - Laboratory method for evaluating vehicle seat vibration - Part 1: Basic requirements) |
Ключевые слова: вибрация, средства измерений, датчик, измерительный блок, функция частотной коррекции, полосовой фильтр, амплитудно-частотная характеристика, фазовая характеристика, поверка
Расположен в: |
---|
Источник информации: https://internet-law.ru/stroyka/text/52655
На эту страницу сайта можно сделать ссылку:
На правах рекламы:
© Антон Серго, 1998-2024.
|
Разработка сайта |
|