Полное меню
Приложение № 2
|
Плотность потока D, м2/м2 |
Горизонтальный путь |
Дверной проем, интенсивность q, м/мин |
Лестница вниз |
Лестница вверх |
|||
Скорость V, v/мин |
Интенсивность q, м/мин |
Скорость V, м/мин |
Интенсивность q, м/мин |
Скорость V, м/мин |
Интенсивность q, м/мин |
||
0,01 |
100 |
1,0 |
1,0 |
100 |
1,0 |
60 |
0,6 |
0,05 |
100 |
5,0 |
5,0 |
100 |
5,0 |
60 |
3,0 |
0,10 |
80 |
8,0 |
8,7 |
95 |
9,5 |
53 |
5,3 |
0,20 |
60 |
12,0 |
13,4 |
68 |
13,6 |
40 |
8,0 |
0,30 |
47 |
14,1 |
16,5 |
52 |
15,6 |
32 |
9,6 |
0,40 |
40 |
16,0 |
18,4 |
40 |
16,0 |
26 |
10,4 |
0,50 |
33 |
16,5 |
19,6 |
31 |
15,6 |
22 |
11,0 |
0,60 |
28 |
16,3 |
19,05 |
24,5 |
14,1 |
18,5 |
10,75 |
0,70 |
23 |
16,1 |
18,5 |
18 |
12,6 |
15 |
10,5 |
0,80 |
19 |
15,2 |
17,3 |
13 |
10,4 |
13 |
10,4 |
0,90 и более |
15 |
13,5 |
8,5 |
8 |
7,2 |
11 |
9,9 |
Примечание. Интенсивность движения в дверном проеме при плотности потока 0,9 и более равная 8,5 м/мин, установлена для дверного проема шириной 1,6 м и более, а при дверном проеме меньшей ширины интенсивность движения следует определять по формуле q = 2,5+3,75´d.
При слиянии в начале i-го участка двух и более людских потоков (рис. П2.1) интенсивность движения qi, м/мин, рассчитывают по формуле:
где qi-1 - интенсивность движения людских потоков, сливающихся в начале i-го участка, м/мин;
di-1 - ширина участков пути слияния, м;
di - ширина рассматриваемого участка пути, м.
Рис. П2.1
Слияние людских потоков
Если значение qi, определенное по формуле (П2.7), больше qmax, то ширину di данного участка пути следует увеличивать на такое значение, чтобы соблюдалось условие (П2.6). В этом случае время движения по участку i определяют по формуле (П2.5).
Расчетное время эвакуации людей из здания устанавливается по времени выхода из него последнего человека.
Перед началом моделирования процесса эвакуации задается схема эвакуационных путей в здании. Все эвакуационные пути подразделяются на эвакуационные участки длиной а и шириной b. Длина и ширина каждого участка пути эвакуации для проектируемых зданий принимаются по проекту, а для построенных - по фактическому положению. Длина пути по лестничным маршам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Эвакуационные участки могут быть горизонтальные и наклонные (лестница вниз, лестница вверх и пандус).
За габариты человека в плане принимается эллипс с размерами осей 0,5 м (ширина человека в плечах) и 0,25 м (толщина человека). Задаются координаты каждого человека xi - расстояние от центра эллипса до конца эвакуационного участка, на котором он находится (рис. П3.1). Если разность координат некоторых людей, находящихся на эвакуационном участке, составляет менее 0,25 м, то принимается, что люди с этими координатами расположены рядом друг с другом - сбоку один от другого (условно: "в ряд"). При этом, исходя из габаритов человека в плане и размеров эвакуационного участка (длина и ширина) для каждого эвакуационного участка определяются: максимально возможное количество человек в одном ряду сбоку друг от друга и максимально возможное количество людей на участке.
Рис. П3.1
Координатная схема размещения людей на путях эвакуации
Координаты каждого человека xi в начальный момент времени задаются в соответствии со схемой расстановки людей в помещениях (рабочие места, места для зрителей, спальные места и т.п.). В случае отсутствия таких данных, например для магазинов, выставочных залов и другое, допускается размещать людей равномерно по всей площади помещения с учетом расстановки технологического оборудования.
Координата каждого человека в момент времени t определяется по формуле:
xi(t) = xi(t-Dt)-Vi(t)×Dt, м, (П3.1)
где xi(t-Dt) - координата i-го человека в предыдущий момент времени, м;
Vi(t) - скорость i-го человека в момент времени t, м/с;
Dt - промежуток времени, с.
Скорость i-го человека Vi(t) в момент времени t определяется по таблице П2.1 приложения 2 к Методике в зависимости от локальной плотности потока, в котором он движется, Di(t) и типа эвакуационного участка.
Локальная плотность Di(t) вычисляется по группе, состоящей из n человек, по формуле:
Di(t) = (n(t)-1)×f/(b×Dx) м2/м2 (П3.2)
где n - количество людей в группе, человек;
f - средняя площадь горизонтальной проекции человека, м2/м2;
b - ширина эвакуационного участка, м;
Dx - разность координат последнего и первого человека в группе, м.
Если в момент времени t координата человека xi(t), определенная по формуле (П3.1), станет отрицательной - это означает, что человек достиг границы текущего эвакуационного участка и должен перейти на следующий эвакуационный участок.
В этом случае координата этого человека на следующем эвакуационном участке определяется:
xi(t) = [xi(t-Dt)-Vi(t)×Dt]+aj-lj м, (П3.3)
где xi(t-Dt) - координата i-го человека в предыдущий момент времени на (j-1) эвакуационном участке, м;
Vi(t) - скорость i-го человека на (j-1)-ом эвакуационном участке в момент времени t, м/с;
aj - длина j-го эвакуационного участка, м;
lj - координата места слияния j-го и (j-1)-го эвакуационных участков - расстояние от начала j-го эвакуационного участка до места слияния его с (j-1)-ым эвакуационным участком, м.
Количество людей, переходящих с одного эвакуационного участка на другой в единицу времени, определяется пропускной способностью выхода с участка Qj(t):
Qj(t) = qj(t)×cj×Dt/(f×60) чел., (П3.4)
где qj(t) - интенсивность движения на выходе с j-го эвакуационного участка в момент времени t, м/мин;
cj - ширина выхода с j-го эвакуационного участка, м;
Dt - промежуток времени, с;
f - средняя площадь горизонтальной проекции человека, м2.
Интенсивность движения на выходе с j-го эвакуационного участка qj(t) в момент времени t определяется в зависимости от плотности людского потока на этом участке Dvj(t).
Плотность людского потока на j-ом эвакуационном участке Dvj(t) в момент времени t определяется по формуле:
Dvj(t) = (Nj(t)×f)/(aj×bj) м2/м2, (П3.5)
где Nj - число людей на j-ом эвакуационном участке, чел.;
f - средняя площадь горизонтальной проекции человека, м2;
aj - длина j-го эвакуационного участка, м;
bj - ширина j-го эвакуационного участка, м.
В момент времени t определяется количество людей m с отрицательными координатами xi(t), определенными по формуле (П3.1). Если значение m£Qj(t), то все m человек переходят на следующий эвакуационный участок и их координаты определяются в соответствии с формулой (П3.3). Если значение m>Qj(t), то количество человек равное значению Qj(t) переходят на следующий эвакуационный участок и их координаты определяются в соответствии с формулой (П3.3), а количество человек, равное значению (m-Qj(t)), не переходят на следующий эвакуационный участок (остаются на данном эвакуационном участке) и их координатам присваиваются значения
xi(t) = k×0,25+0,25,
где k - номер ряда, в котором будут находиться люди (максимально возможное количество человек в одном ряду сбоку друг от друга для каждого эвакуационного участка определяется перед началом расчетов). Таким образом, возникает скопление людей перед выходом с эвакуационного участка.
На рис. П3.2 изображена блок-схема определения расчетного времени эвакуации людей из здания.
Рис. П3.2.
Блок-схема определения расчетного времени эвакуации людей из здания
На основании заданных начальных условий (начальных координат людей, параметров эвакуационных участков) определяются плотности людских потоков на путях эвакуации и пропускные способности выходов с эвакуационных участков. Далее, в момент времени t = t+Dt, определяется наличие ОФП на путях эвакуации. В зависимости от этого выбирается направление движения каждого человека и вычисляется новая координата каждого человека. После этого снова определяются плотности людских потоков на путях эвакуации и пропускные способности выходов. Затем вновь дается приращение по времени Dt и определяются новые координаты людей с учетом наличия ОФП на путях эвакуации в этот момент времени. После этого процесс повторяется. Расчеты проводятся до тех пор, пока все люди не будут эвакуированы из здания.
Множество людей, одновременно идущих в одном направлении по общим участкам пути, образуют людской поток. Участками формирования людских потоков в помещениях следует принимать проходы между оборудованием. Для последующих участков эвакуационных путей они представляют собой первичные источники людских потоков. Распределение Ni человек на участках формирования, имеющих ширину bi и длину li, принимается равномерным. Поэтому в начальный момент t0 на каждом элементарном участке Dli, занимаемом потоком, плотность потока Dt0i определяется по формуле:
Dt0i = Nt0i/bi×Dli чел./м2. (П4.1)
При дальнейшем движении людских потоков из первичных источников по общим участкам пути происходит их слияние. Образуется общий поток, части которого имеют различную плотность. Происходит выравнивание плотностей различных частей людского потока - его переформирование. Следует учитывать, что его головная часть, имеющая перед собой свободный путь, растекается - люди стремятся идти свободно при плотности D0. За интервал времени Dt часть людей переходит с этих элементарных участков на последующие и происходит изменение состояния людского потока, его движение.
Скорость движения людского потока при плотности Di на i-ом отрезке участка пути k-го вида следует считать случайной величиной VD,k, имеющей числовые характеристики:
математическое ожидание (среднее значение)
VD,k = V0,k×(1-ak×lnDi/D0,k)×m при Di > D0,k,
VD,k = V0,k при Di £ D0,k, (П4.2)
среднее квадратичное отклонение
s(VD,k) = s(V0,k) (1-ak×lnDi/D0,k), (П4.3)
где V0,k и s(V0,k) - математическое ожидание скорости свободного движения людей в потоке (при Di £ D0,k) и ее среднее квадратичное отклонение, м/мин;
D0,k - предельное значение плотности людского потока, до достижения которого возможно свободное движение людей по k-му виду пути (плотность не влияет на скорость движения людей);
аk - коэффициент адаптации людей к изменениям плотности потока при движении по k-му виду пути;
Di - значение плотности людского потока на i-ом отрезке (Dl) участка пути шириной bi, чел./м2;
m - коэффициент влияния проема.
Значения перечисленных параметров следует принимать по таблице П4.1.
Таблица П4.1
Вид пути, k |
V0,k м/мин |
s(V0,k) м/мин |
D0,k чел./м2 |
ak |
m |
Горизонтальный в здании |
100 |
5 |
0,51 |
0,295 |
1 |
Горизонтальный вне здания |
100 |
5 |
0,70 |
0,407 |
1 |
Проем* |
100 |
5 |
0,65 |
0,295 |
1,25-0,05D, при D ³ 5 |
Лестница вниз |
80 |
5 |
0,89 |
0,400 |
1 |
Лестница вверх |
50 |
5 |
0,67 |
0,305 |
1 |
* - При D = 9 чел./м2 значения qi = Vi×D0,k определяются по формуле qi = 10×(3,75+2,5×bi), м/мин.
При любом возможном значении Vt0 люди в количестве Nt0i, находящиеся в момент t0 на i-ом элементарном участке, двигаются по нему и начинают переходить на последующий участок (i+1) (рис. П4.1). На участок i в свою очередь переходит часть людей с предыдущего (i-1) элементарного участка и из источника j.
Рис. П4.1
Изменения состояния потока в последовательные моменты времени
По прошествии времени Dt к моменту t1 = t0+Dt только часть людей Nt0i,i+1 с участка i успеет перейти на участок (i+1). К этому моменту времени из Nt0i людей, бывших на участке i в момент t0, останется (Nt0i - Nt0i,i+1) людей. Их число пополняется за счет людей, успевших за этот интервал времени перейти на него с предыдущего участка - Nt0i-1,i и из источника Nt0j,i. Тогда плотность потока на участке i в момент t1 будет равна:
Скорость движения людей, оказавшихся на участке i в момент t1, определяется по формуле:
(П4.5)
Следует учитывать, что изменение плотности потока на каждом участке в различные моменты времени отражает процесс переформирования различных частей потока, и как частный случай, процесс растекания потока.
Изменение плотности потока на каждом из элементарных участков в последовательные моменты времени зависит от количества людей, переходящих через границы участков. В общем случае количество людей, переходящих за интервал времени Dt с участка i на последующий участок i+1, составляет:
(П4.6)
Скорость перехода Vпер через границы смежных элементарных участков следует принимать, руководствуясь следующими формулами:
(П4.7)
Следует учитывать, что в тот момент времени tn, когда плотность потока на участке i достигла максимальной величины, на этот участок не может прийти ни один человек, ни с предшествующего участка, ни из источника. В результате перед участком i задерживается соответственно DNtni-1 и DNtnj,i людей. В следующий момент времени tn+1 часть людей с участка i переходит на участок i+1, плотность людского потока на нем уменьшится и часть скопившихся перед его границей людей сможет перейти на него. Доля их участия в пополнении людьми участка i в момент tn+1 определяется формулой:
Формулы (П4.4)-(П4.8) полностью описывают состояние людского потока на элементарных участках и их переходы в последовательные моменты времени. Совокупность значений расчетного времени эвакуации, полученных при различных значениях V0,k, формирует эмпирическое распределение вероятностей значений Stp. По этому распределению следует рассчитывать значение времени завершения эвакуации, соответствующее вероятности P(tp.эв) = 0,999.
1. Значение времени начала эвакуации tнэ для помещения очага пожара следует принимать равным 0,5 мин. Для остальных помещений значение времени начала эвакуации tнэ следует определять по таблице П5.1.
Таблица П5.1
№ п/п |
Класс функциональной пожарной опасности зданий и характеристика контингента людей |
Значение времени начала эвакуации людей tнэ, мин |
||
Здания, оборудованные системой оповещения и управления эвакуацией людей |
Здания, не оборудованные системой оповещения и управления эвакуацией людей |
|||
I-II типа |
III-V типа |
|
||
1 |
Здания детских дошкольных образовательных учреждений, специализированных домов престарелых и инвалидов (неквартирные), больницы, спальные корпуса образовательных учреждений интернатного типа и детских учреждений; многоквартирные жилые дома; одноквартирные жилые дома, в том числе блокированные. (Ф1.1, Ф1.3, Ф1.4) Люди могут находиться в состоянии сна, но знакомы со структурой эвакуационных путей и выходов. |
6,0 |
4,0 |
9,0 |
2 |
Гостиницы, общежития, спальные корпуса санаториев и домов отдыха общего типа, кемпингов, мотелей и пансионатов. (Ф1-2) Жильцы могут находиться в состоянии сна и недостаточно знакомы со структурой эвакуационных путей и выходов. |
3,0 |
2,0 |
6,0 |
3 |
Здания зрелищных и культурно-просветительных учреждений; здания организаций по обслуживанию населения (Ф2, Ф3). Посетители находятся в бодрствующем состоянии, но могут быть не знакомы со структурой эвакуационных путей и выходов |
3,0 |
1,0 |
6,0 |
4 |
Здания научных и образовательных учреждений, научных и проектных организаций, органов управления учреждений (Ф4). Посетители находятся в бодрствующем состоянии и хорошо знакомы со структурой эвакуационных путей и выходов. |
3,0 |
1,5 |
6,0 |
2. Принципы составления расчетной схемы эвакуации.
Расчетная схема эвакуации представляет собой отдельно выполненную, или возможно нанесенную на план здания схему, на которой отражены:
количество людей на начальных участках - источниках (проходы между рабочими местами, оборудованием, рядами кресел и т.п.);
направление их движения (маршруты);
геометрические параметры участков пути (длина, ширина) и виды участков пути.
Расчетная схема эвакуации должна учитывать ситуацию, при которой хотя бы один человек находится в наиболее удаленной от выхода из здания, сооружения или строения точке.
В расчетной схеме учитываются только те пути движения людей, которые отвечают требованиям, предъявляемым к путям эвакуации.
Рассмотрев количество людей на начальных участках пути, следует определить направление их движения. Установлены следующие наблюдаемые правила выбора людьми направления (маршрута) движения при эвакуации:
а) движение по тому пути, которым люди попали в здание;
б) исключение путей движения, проходящих рядом с зоной горения, хотя люди могут эвакуироваться через задымленные коридоры;
в) влияние персонала. В общественных зданиях, как правило, посетители при пожаре следуют указаниям персонала, даже если эти указания не соответствуют оптимальным;
г) при эвакуации с первого этажа - движение к открытому выходу наружу из здания;
д) сложная логистическая зависимость, описывающая выбор выхода с этажа зрительного зала (рис. П5.5, а, б);
е) при прочих равных условиях - движение к ближайшему выходу.
Кроме того, имеющиеся данные показывают, что фактором выбора направления может быть место парковки личного автомобиля, место встречи членов семьи и т.п. Определение ширины пути вызывает затруднение только при выходе людей на участок "неограниченной" ширины, например в вестибюль. В таком случае ширина потока (b) зависит от количества людей (N) и длины (l) участка: b = 4 м при N < 100 чел. и l £ 6 м; b = 6 м - в остальных случаях.
Согласно данным натурных наблюдений установлено, что повороты пути не влияют на параметры движения людского потока.
Определение длины (вдоль оси пути) отличается для горизонтальных и наклонных путей. К наклонным путям относятся лестницы и пандусы. Свободная ширина b наклонного пути, например лестничного марша, принимается в свету: от перил до стены. Длина наклонного пути L (рис. П5.1) принимается по истинному его значению. Этажные и междуэтажные площадки в целях упрощения и облегчения вычислений, учитывая их небольшие размеры и меньшую сложность движения по ним в сравнении с лестничными маршами, допускается отнести к наклонным путям. Тогда средняя длина наклонного пути в пределах одного этажа, с учетом движения по площадкам, составит:
для двухмаршевых лестниц
где L¢ - горизонтальная проекция длины наклонного пути, м;
a - угол наклона к горизонту;
не допуская серьезной погрешности, длину пути по двухмаршевой лестнице можно принимать равной его утроенной высоте Н, т.е. L = 3·H;
для трехмаршевых лестниц
.
Рис. П5.1
Расчетная длина пути по лестнице:
а - двухмаршевая лестница; б - трехмаршевая лестница
Пандусы, если их наклон незначителен (меньше 1:8), можно относить к горизонтальным путям, при более значительных наклонах - к лестницам. Длина наклонного пути также определяется по его оси.
Пути движения в пределах здания обычно пересекаются дверными проемами, декоративными порталами, имеют сужения за счет различных архитектурных или технологических элементов, выступающих из плоскости ограждений. Такие местные сужения независимо от их характера в дальнейшем называются проемами шириной b. Длина пути L в проеме может не учитываться, если она не превышает 0,7 м, т.е. длины одного шага, в противном случае движение в проеме следует рассматривать, как движение на самостоятельном расчетном участке горизонтального пути.
Лестничные клетки являются центрами тяготения людских потоков (для первого этажа - выходы наружу), на входе в которые заканчивается второй этап эвакуации. Поэтому расчетные схемы целесообразно составлять для каждой части этажа, по которой люди эвакуируются через предусмотренную для них лестничную клетку (выход наружу). На рис. П5.2 приведен пример составления расчетной схемы эвакуации людей по части этажа до входа в лестничную клетку.
Рис. П5.2
Пример составления расчетной схемы эвакуации людей по части этажа до входа в
лестничную клетку: N -
количество людей; b -
ширина; l - длина; b0 - ширина проема
В зрительных залах с постоянными местами для посетителей распределение людей по направлениям движения к эвакуационным выходам показано на рис. П5.3 и П5.4.
Рис. П5.3
Маршрутизация движения людских потоков при эвакуации из зрительных залов с
боковыми (продольными) проходами
Рис. П5.4
Маршрутизация движения людских потоков при эвакуации из зрительных залов с
поперечным проходом
Если в дальнейшем люди выходят в фойе или вестибюль, т.е. через помещения не ограничивающие, как коридор, ширины людского потока, то распределение людских потоков между возможными эвакуационными выходами, когда они не блокированы, происходит согласно закономерностям, приведенным на рис. П5.5, а, б.
Рис. П5.5, а
Число зрителей и выбор выхода при эвакуации в две лестничные клетки либо в две
открытые лестницы или в два выхода из здания: N - общее количество эвакуирующихся; N1 - число эвакуирующихся через ближний
выход; N2
- число эвакуирующихся через дальний выход; l1 - длина пути до ближнего выхода; l2 - длина пути до дальнего выхода
Рис. П5.5, б
Число зрителей эвакуирующихся по открытой лестнице: N - общее количество эвакуирующихся; N1 - число эвакуирующихся по открытой
лестнице; l1
- длина пути до открытой лестницы; l2 - длина пути до выхода на лестничную
клетку
3. При однородном составе людского потока групп мобильности М2, М3 и М4 значения величин D, V и q следует принимать в соответствии с данными таблицы П5.2.
Таблица П5.2
Расчетные значения параметров для групп мобильности М2-М4
Группа мобильности |
Вид пути |
||||||||||
D, м2/м2 |
Горизонтальный |
Лестница вниз |
Лестница вверх |
Пандус вниз |
Пандус вверх |
||||||
V, м/мин |
q, м2/м´мин |
V, м/мин |
q, м2/м´мин |
V, м/мин |
q, м2/м´мин |
V м/мин |
q, м2/м´мин |
V, м/мин |
q, м2/м´мин |
||
М2 |
0,01 |
30,00 |
0,30 |
30,00 |
0,30 |
20,00 |
0,20 |
45,00 |
0,45 |
25,00 |
0,25 |
0,05 |
30,00 |
1,50 |
30,00 |
1,50 |
20,00 |
1,00 |
45,00 |
2,25 |
25,00 |
1,25 |
|
0,1 |
30,00 |
3,00 |
30,00 |
3,00 |
20,00 |
2,00 |
45,00 |
4,50 |
25,00 |
2,50 |
|
0,2 |
26,05 |
5,21 |
26,22 |
5,24 |
16,78 |
3,36 |
41,91 |
8,38 |
21,98 |
4,40 |
|
0,3 |
21,97 |
6,59 |
22,01 |
6,60 |
13,96 |
4,19 |
33,92 |
10,18 |
18,09 |
5,43 |
|
0,4 |
19,08 |
7,63 |
19,03 |
7,61 |
11,96 |
4,78 |
28,25 |
11,30 |
15,32 |
6,13 |
|
0,5 |
16,84 |
8,42 |
16,71 |
8,36 |
10,41 |
5,20 |
23,85 |
11,93 |
13,18 |
6,59 |
|
0,6 |
15,01 |
9,01 |
14,82 |
8,89 |
9,14 |
5,48 |
20,26 |
12,16 |
11,43 |
6,86 |
|
0,7 |
13,46 |
9,42 |
13,22 |
9,25 |
8,07 |
5,65 |
17,22 |
12,05 |
9,95 |
6,97 |
|
0,8 |
12,12 |
9,69 |
11,83 |
9,47 |
7,14 |
5,71 |
14,59 |
11,67 |
8,67 |
6,94 |
|
0,9 |
10,93 |
9,84 |
10,61 |
9,55 |
6,32 |
5,68 |
12,27 |
11,04 |
7,54 |
6,79 |
|
М3 |
0,01 |
70,00 |
0,70 |
20,00 |
0,20 |
25,00 |
0,25 |
105,00 |
1,05 |
55,00 |
0,55 |
0,05 |
70,00 |
3,50 |
20,00 |
1,00 |
25,00 |
1,25 |
105,00 |
5,25 |
55,00 |
2,75 |
|
0,1 |
70,00 |
7,00 |
20,00 |
2,00 |
25,00 |
2,50 |
105,00 |
10,50 |
55,00 |
5,50 |
|
0,2 |
53,50 |
10,70 |
20,00 |
4,00 |
20,57 |
4,11 |
83,41 |
16,68 |
45,54 |
9,11 |
|
0,3 |
43,57 |
13,07 |
16,67 |
5,00 |
17,05 |
5,12 |
65,70 |
19,71 |
35,59 |
10,68 |
|
0,4 |
36,52 |
14,61 |
14,06 |
5,62 |
14,56 |
5,82 |
53,13 |
21,25 |
28,54 |
11,41 |
|
0,5 |
31,05 |
15,53 |
12,04 |
6,02 |
12,62 |
6,31 |
43,39 |
21,69 |
23,06 |
11,53 |
|
0,6 |
26,59 |
15,95 |
10,38 |
6,23 |
11,04 |
6,62 |
35,42 |
21,25 |
18,59 |
11,15 |
|
0,7 |
22,81 |
15,97 |
8,98 |
6,29 |
9,70 |
6,79 |
28,69 |
20,08 |
14,81 |
10,37 |
|
0,8 |
19,54 |
15,63 |
7,77 |
6,21 |
8,54 |
6,83 |
22,86 |
18,28 |
11,53 |
9,23 |
|
0,9 |
16,65 |
14,99 |
6,70 |
6,03 |
7,52 |
6,77 |
17,71 |
15,94 |
8,64 |
7,78 |
|
М4 |
0,01 |
60,00 |
0,60 |
- |
- |
- |
- |
115,00 |
1,15 |
40,00 |
0,40 |
0,05 |
60,00 |
3,00 |
- |
- |
- |
- |
115,00 |
5,75 |
40,00 |
2,00 |
|
0,1 |
60,00 |
6,00 |
- |
- |
- |
- |
115,00 |
11,50 |
40,00 |
4,00 |
|
0,2 |
50,57 |
10,11 |
- |
- |
- |
- |
99,65 |
19,93 |
35,17 |
7,03 |
|
0,3 |
40,84 |
12,25 |
- |
- |
- |
- |
79,88 |
23,97 |
28,36 |
8,51 |
|
0,4 |
33,93 |
13,57 |
- |
- |
- |
- |
65,86 |
26,34 |
23,52 |
9,41 |
|
0,5 |
28,58 |
14,29 |
- |
- |
- |
- |
54,98 |
27,49 |
19,77 |
9,89 |
|
0,6 |
24,20 |
14,52 |
- |
- |
- |
- |
46,09 |
27,65 |
16,71 |
10,03 |
|
0,7 |
20,50 |
14,35 |
- |
- |
- |
- |
38,57 |
27,00 |
14,12 |
9,88 |
|
0,8 |
17,30 |
13,84 |
- |
- |
- |
- |
32,06 |
25,65 |
11,88 |
9,50 |
|
0,9 |
14,47 |
13,02 |
- |
- |
- |
- |
26,32 |
23,68 |
9,90 |
8,91 |
Примечание:
М2 - немощные люди, мобильность которых снижена из-за старения организма (инвалиды по старости); инвалиды на протезах; инвалиды с недостатками зрения, пользующиеся белой тростью; люди с психическими отклонениями;
М3 - инвалиды, использующие при движении дополнительные опоры (костыли, палки);
М4 - инвалиды, передвигающиеся на креслах-колясках, приводимых в движение вручную.
4. Площадь горизонтальной проекции человека (рис. П5.6) f, м2/чел., принимается в зависимости от состава людей в потоке в соответствии с приведенными ниже данными.
Рис. П5.6
Площадь горизонтальной проекции человека:
а) расчетная; б) действительная
Размеры людей изменяются в зависимости от физических данных, возраста и одежды. В таблицах П5.3, П5.4, П5.5 и на рисунке П5.7 приводятся усредненные размеры людей разного возраста, в различной одежде и с различным грузом. При этом приведены значения площади горизонтальной проекции инвалидов с нарушением опорно-двигательного аппарата.
Площади горизонтальной проекции взрослых людей
Тип одежды |
Ширина а, м |
Толщина с, м |
Площадь горизонтальной проекции, м2/чел. |
Летняя |
0,46 |
0,28 |
0,100 |
Весенне-осенняя |
0,48 |
0,30 |
0,113 |
Зимняя |
0,50 |
0,32 |
0,125 |
Площади горизонтальной проекции детей и подростков
Тип одежды |
Возрастные группы |
||
младшая до 9 лет |
средняя 10-13 лет |
старшая 14-16 лет |
|
Домашняя одежда |
0,04 |
0,06 |
0,08 |
Домашняя одежда со школьной сумкой |
0,07 |
0,10 |
0,14 |
Уличная одежда |
0,09 |
0,13 |
0,16 |
Площадь горизонтальной проекции людей с ограниченной мобильностью, м2/чел.
Рис. П5.7
Площадь горизонтальной проекции людей с различным грузом
5. Время задержки tз движения на участке i из-за образовавшегося скопления людей на границе с последующим участком (i+1) определяется по формуле:
(П5.1)
где N - количество людей, чел.;
f - площадь горизонтальной проекции, м2;
qпри D=0,9 - интенсивность движения через участок i+1 при плотности 0,9 и более, м/мин;
bi+1 - ширина участка, м, при вхождении на который образовалось скопление людей;
qi+1 - интенсивность движения на участке i, м/мин;
bi - ширина предшествующего участка i, м.
Время существования скопления tск на участке i определяется по формуле:
(П5.2)
Расчетное время эвакуации по участку i, в конце которого на границе с участком (i+1) образовалось скопление людей равно времени существования скопления tск. Расчетное время эвакуации по участку i допускается определять по формуле:
(П5.3)
I. Порядок проведения расчета
Производится экспертный выбор сценария или сценариев пожара, при которых ожидаются наихудшие последствия для находящихся в здании людей.
Формулировка сценария развития пожара включает в себя следующие этапы:
выбор места нахождения первоначального очага пожара и закономерностей его развития;
задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);
задание параметров окружающей среды и начальных значений параметров внутри помещений.
Выбор места нахождения очага пожара производится экспертным путем. При этом учитывается количество горючей нагрузки, ее свойства и расположение, вероятность возникновения пожара, возможная динамика его развития, расположение эвакуационных путей и выходов.
Наиболее часто при расчетах рассматриваются три основных вида развития пожара: круговое распространение пожара по твердой горючей нагрузке, линейное распространение пожара по твердой горючей нагрузке, неустановившееся горение горючей жидкости.
Скорость выгорания для этих случаев определяется формулами:
(П6.1)
где yУД - удельная скорость выгорания (для жидкостей установившаяся), кг/(с×м2);
v - скорость распространения пламени, м/с;
b - ширина полосы горючей нагрузки, м;
tст - время стабилизации горения горючей жидкости, с;
F - площадь очага пожара, м2.
С учетом раздела II данного приложения выбирается метод моделирования, формулируется математическая модель, соответствующая данному сценарию, и производится моделирование динамики развития пожара. На основании полученных результатов рассчитывается время достижения каждым из опасных факторов пожара предельно допустимого значения на путях эвакуации.
Критическое время по каждому из опасных факторов пожара определяется как время достижения этим фактором предельно допустимого значения на путях эвакуации на высоте 1,7 м от пола.
Предельно допустимые значения по каждому из опасных факторов пожара составляют:
по повышенной температуре - 70°С;
по тепловому потоку - 1400 Вт/м2;
по потере видимости - 20 м;
по пониженному содержанию кислорода - 0,226 кг/м3;
по каждому из токсичных газообразных продуктов горения (СО2 - 0,11 кг/м3; СО - 1,16×10-3 кг/м3; HCL - 23×10-6 кг/м3).
Необходимо отметить, что при использовании полевой модели определение критического времени имеет существенные особенности, связанные с тем, что критическое значение в различных точках помещения достигается не одновременно. Для помещений с соизмеримыми горизонтальными размерами критическое время определяется как максимальное из критических времен для эвакуационных выходов из данного помещения (время блокирования последнего выхода).
Определяется время блокирования tбл:
(П6.2)
II. Классификация и область применения методов математического моделирования пожара
Для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.
Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:
интегральный метод:
для зданий, содержащих развитую систему помещений малого объема простой геометрической конфигурации;
для помещений, где характерный размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз);
для предварительных расчетов с целью выявления наиболее опасного сценария пожара;
зонный (зональный) метод:
для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз), когда размер очага пожара существенно меньше размеров помещения;
для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);
полевой метод:
для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);
для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и т.д.);
для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара, и т.д.).
При использовании интегральной и зонной моделей для помещения, один из линейных размеров которого более чем в пять раз превышает хотя бы один из двух других линейных размеров, необходимо это помещение делить на участки, размеры которых соизмеримы между собой, и рассматривать участки как отдельные помещения, сообщающиеся проемами, площадь которых равна площади сечения на границе участков. Использование аналогичной процедуры в случае, когда два линейных размера превышают третий более чем в 5 раз, не допускается.
III. Интегральная математическая модель расчета газообмена в здании, при пожаре
Для расчета распространения продуктов горения по зданию составляются и решаются уравнения аэрации, тепло- и массообмена как для каждого помещения в отдельности, так и для всего здания в целом.
Уравнения движения, связывающие значения перепадов давлений на проемах с расходами газов через проемы, имеют вид:
(П6.3)
где Gji - расход газов через проем между двумя (j-м и i-м) смежными помещениями, кг/с;
m - коэффициент расхода проема (m = 0,8 для закрытых проемов и m = 0,64 для открытых);
F - площадь сечения проема, м2;
r - плотность газов, проходящих через проем, кг/м3;
DRji - средний перепад полных давлений между j-м и i-м помещением, Па.
Направление (знак) расхода определяется знаком разности давлений DRji. В зависимости от этого плотность r принимает различные значения.
Знак расхода газов (входящий в помещение расход считается положительным, выходящий - отрицательным) и значение r зависят от знака перепада давлений:
(П6.4)
Для прогнозирования параметров продуктов горения (температуры, концентраций токсичных компонентов продуктов горения) в помещениях многоэтажного здания на этажах, расположенных выше этажа, на котором может возникнуть пожар, рассматриваются процессы распространения продуктов горения в вертикальных каналах (лестничные клетки, шахты лифтов, вентканалы и т.п.).
Вертикальную шахту по высоте разделяют на зоны, которые представляют узлы в гидравлической схеме здания. Зона по высоте может охватывать несколько этажей здания. В этом случае расход газа между зонами можно выразить формулой вида:
(П6.5)
где
- характеристика гидравлического сопротивления на границе зон;
F - площадь поперечного сечения шахты;
k - коэффициент (допускается принимать равным 0,05 с2/м);
g = 9,81 м/с2 - ускорение свободного падения;
Dр - перепад давлений между узлами.
Здание представляют в виде гидравлической схемы, узлы которой моделируют помещения, а связи - пути движения продуктов горения и воздуха. Каждое помещение здания описывается системой уравнений, состоящей из уравнения баланса массы, уравнения сохранения энергии и уравнения основного газового закона (Менделеева-Клайперона).
Уравнение баланса массы выражается формулой:
где Vj - объем помещения, м3;
t - время, с;
- сумма расходов, входящих в помещение, кг/с;
- сумма расходов, выходящих из помещения, кг/с;
y - скорость выгорания пожарной нагрузки, кг/с.
Уравнение сохранения энергии выражается формулой:
где Сv, Cp, - удельная изохорная и изобарная теплоемкости, кДж/(кг×К);
Ti, Tj - температуры газов в i-м и j-м помещениях, К;
QГ - количество тепла, выделяемого в помещении при горении, кВт;
Qw - тепловой поток, поглощаемый конструкциями и излучаемый через проемы, кВт.
Для помещения очага пожара величина QГ определяется по формуле:
QГ = h×Qн×y+I,
где h - коэффициент полноты горения;
Qн - низшая теплота сгорания, кДж/кг;
I - энтальпия газифицированной горючей нагрузки.
Для остальных помещений QГ = 0.
Коэффициент полноты горения h определяется по формуле:
где ha - коэффициент полноты горения в режиме пожара, регулируемом горючей нагрузкой, определяемый формулой:
Коэффициент К рассчитывается по формуле:
(П6.10)
где
ХОХ,а - начальная концентрация кислорода в помещении очага пожара;
ХОХ,m - текущая концентрация кислорода в помещении очага пожара.
Уравнение Менделеева-Клайперона выражается формулой:
где Pj - давление газа в j-м помещении, Па;
Tj - температура газа в j-м помещении, К;
R = 8,31 - универсальная газовая постоянная, Дж/(моль×К);
М - молярная масса газа, моль.
Параметры газа в помещении определяются из уравнения баланса масс отдельных компонентов продуктов горения и кислорода и уравнения баланса оптической плотности дыма.
Уравнение баланса масс отдельных компонентов продуктов горения и кислорода:
где XL,i, XL,j - концентрация L-го компонента продуктов горения в i-м и j-м помещениях, кг/кг;
LL - количество L-го компонента продуктов горения (кислорода), выделяющегося (поглощающегося) при сгорании одного килограмма пожарной нагрузки, кг/кг.
Уравнение баланса оптической плотности дыма:
где mi, mj - оптическая плотность дыма в i- м и j-м помещениях, Нп×м-1;
Dm - дымообразующая способность пожарной нагрузки, Нп×м2/кг.
Оптическая плотность дыма при обычных условиях связана с расстоянием предельной видимости в дыму формулой:
lпр = 2,38/m. (П6.14)
Для помещений без источника тепла система уравнений (П6.6), (П6.7) и (П6.8) упрощается и представляется в виде:
(П6.15)
где
.
Первое уравнение связывает перепады давлений на соединяющих помещение проемах с расходом газа через эти проемы. Второе - выражает постоянство объема для данного помещения. Таким образом, для всего здания требуется решать систему, состоящую из (mГС+mВС)×nЭТ нелинейных уравнений вида (П6.12) и nУ×nЭТ линейных уравнений вида (П6.13). Здесь mГС и mВС - соответственно число горизонтальных и вертикальных связей на этаже; nУ - число узлов; nЭТ - число этажей.
Система уравнений включающая в себя уравнения (П6.6), (П6.7) для помещения очага пожара и (П6.12), (П6.13) для остальных помещений и уравнение (П6.11), описывающая гидравлическую схему здания, решается численно методом итерации в совокупности с методом секущих.
Основные уравнения для определения температуры газа и концентрации продуктов горения в помещениях здания получены из уравнений сохранения энергии и массы.
Температура газа в помещении, где отсутствует очаг пожара определяется из уравнения теплового баланса, которое можно получить из уравнения сохранения энергии (П6.7). Формула для определения температуры газа в j-м помещении здания в "n"-ый момент времени:
(П6.16)
где Qj - сумма источников (стоков) тепла в объеме j-го помещения и тепла, уходящего в ограждающие конструкции;
- приведенный коэффициент теплоотдачи;
T0 - начальная температура в помещении;
Fjст - площадь поверхности ограждающих конструкций в j-м помещении.
Коэффициент теплоотдачи a может быть рассчитан по эмпирической формуле:
(П6.17)
Концентрация отдельных компонентов газовых смесей в помещениях здания вычисляются из уравнения баланса массы данного компонента (П6.12). Концентрация L-го компонента продуктов горения в j-м помещении в "n"-й момент времени определяется уравнением:
(П6.18)
Оптическая концентрация дыма в помещениях определяется из балансового уравнения (П6.13). Натуральный показатель ослабления среды в j-ом помещении в "n"-й момент времени определяется уравнением:
(П6.19)
Аналитические соотношения для определения критической продолжительности пожара
Для одиночного помещения высотой не более 6 м, удовлетворяющего условиям применения интегральной модели, при отсутствии систем противопожарной защиты, влияющих на развитие пожара, допускается определять критические времена по каждому из опасных факторов пожара с помощью аналитических соотношений:
по повышенной температуре
(П6.20)
по потере видимости
(П6.21)
по пониженному содержанию кислорода
(П6.22)
по каждому из газообразных токсичных продуктов горения
(П6.23)
где
- размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения, кг;
t0 - начальная температура воздуха в помещении, °С;
n - показатель степени, учитывающий изменение массы выгорающего материала во времени;
А - размерный параметр, учитывающий удельную массовую скорость выгорания горючего материала и площадь пожара, кг/сn;
Z - безразмерный параметр, учитывающий неравномерность распределения ОФП по высоте помещения;
QH - низшая теплота сгорания материала, МДж/кг;
Cp - удельная изобарная теплоемкость газа, МДж/кг;
j - коэффициент теплопотерь (принимается по данным справочной литературы, при отсутствии данных может быть принят равным 0,3);
h - коэффициент полноты горения (определяется по формуле П6.9);
V - свободный объем помещения, м3;
а - коэффициент отражения предметов на путях эвакуации;
Е - начальная освещенность, лк;
lпр - предельная дальность видимости в дыму, м;
Dm - дымообразующая способность горящего материала, Нп×м2/кг;
L - удельный выход токсичных газов при сгорании 1 кг материала, кг/кг;
X - предельно допустимое содержание токсичного газа в помещении, кг×м-3 (= 0,11 кг/м3; XCO = 1,16×10-3 кг/м3; XHCL = 23×10-6 кг/м3);
- удельный расход кислорода, кг/кг.
Если под знаком логарифма получается отрицательное число, то данный ОФП не представляет опасности.
Параметр z вычисляют по формуле:
(П6.24)
где h - высота рабочей зоны, м;
Н - высота помещения, м.
Определяется высота рабочей зоны:
h=hпл+1,7-0,5×d, (П6.25)
где hпл - высота площадки, на которой находятся люди, над полом помещения, м;
d - разность высот пола, равная нулю при горизонтальном его расположении, м.
Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому, например, при определении необходимого времени эвакуации людей из партера зрительного зала с наклонным полом значение h следует находить, ориентируясь на наиболее высоко расположенные ряды кресел. Параметры А и n вычисляют так:
для случая горения жидкости с установившейся скоростью:
A = yУД×F, n = 1,
где yУД - удельная массовая скорость выгорания жидкости, кг/(м2×с);
для кругового распространения пожара:
A = 1,05×yУД×V2, n = 3,
где V - линейная скорость распространения пламени, м/с;
для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени (например, распространение огня в горизонтальном направлении по занавесу после охвата его пламенем по всей высоте):
A = yУД×V×b, n =2,
где b - перпендикулярный к направлению движения пламени размер зоны горения, м.
При отсутствии специальных требований значения а и Е принимаются равными 0,3 и 50 лк соответственно, а значение lпр = 20 м.
При решении задач с использованием двухзонной модели пожар в здании характеризуется усредненными по массе и объему значениями параметров задымленной зоны:
Т - температура среды в задымленной зоне, К;
m - оптическая плотность дыма, Нп/м;
xi - массовая концентрация i-того токсичного продукта горения в задымленной зоне, кг/кг;
xк - массовая концентрация кислорода, кг/кг;
Z - высота нижней границы слоя дыма, м.
В свою очередь перечисленные параметры выражаются через основные интегральные параметры задымленной зоны с помощью следующих формул:
(П6.26)
(П6.27)
(П6.28)
(П6.29)
где m, mi - общая масса дыма и соответственно i-го токсичного продукта горения в задымленной зоне, кг;
mK - масса кислорода в задымленной зоне, кг;
QЗ - энтальпия продуктов горения в задымленной зоне, кДж;
S - оптическое количество дыма, Нп×м2;
r - плотность дыма при температуре Т, кг/м3;
VД - объем задымленной зоны, м3;
Н, А - высота и площадь помещения, м;
ср - удельная теплоемкость дыма, кДж/(К×кг).
Динамика основных интегральных параметров задымленной зоны определяется интегрированием системы следующих балансовых уравнений:
общей массы компонентов задымленной зоны с учетом дыма, вносимого в зону конвективной колонкой и дыма удаляемого через проемы в соседние помещения:
(П6.30)
где t - текущее время, с;
GK, GП, - массовый расход дыма соответственно через конвективную колонку и открытые проемы в помещении, кг/с;
энтальпия компонентов задымленной зоны с учетом тепла, вносимого в зону конвективной колонкой, теплоотдачи в конструкции и уноса дыма в проемы:
(П6.31)
где QK, QП, Qкон - тепловая мощность, соответственно, вносимая в задымленную зону конвективной колонкой, удаляемая с дымом через открытые проемы и теряемая в конструкции, кВт;
массы кислорода с учетом потерь на окисление продуктов пиролиза горючих веществ:
(П6.32)
h - полнота сгорания горючего материала, кг/кг;
y - скорость выгорания горючего материала, кг/с;
LK - потребление кислорода при сгорании единицы массы горючего материала, кг/кг;
оптического количества дыма с учетом дымообразующей способности горящего материала:
(П6.33)
где D - дымообразующая способность горючего материала, Нп/(м2×кг);
массы i-го токсичного продукта горения:
(П6.34)
где Li - массовый выход i-го токсичного продукта горения, кг/кг.
Масса компонентов дыма GK, вносимых в задымленную зону конвективной колонкой, оценивается с учетом количества воздуха, вовлекаемого в конвективную колонку по всей ее высоте до нижней границы слоя дыма. В инженерных расчетах расход компонентов дыма через осесимметричную конвективную колонку на высоте нижнего уровня задымленной зоны Z (в зависимости от того, какая область конвективной колонки или факела погружена в задымленную зону) задается полуэмпирической формулой:
(П6.35)
где Q - мощность очага пожара, кВт.
Динамика параметров очага пожара определяется развитием площади горения с учетом сложного состава горючих материалов, их расположения, места возникновения очага пожара и полноты сгорания:
(П6.36)
Потери тепла в ограждающие конструкции рассчитываются с учетом температуры горячей струи Тс, скорости и излучательной способности струи, омывающей конструкции и прогрева самой i-й конструкции Тi(y) по толщине у. Для этого численно интегрируется нестационарное уравнение Фурье:
(П6.37)
с граничными и начальными условиями:
(П6.38)
(П6.39)
Тi(0,y) = T0, 0 £ y £ d (П6.40)
где aК, aЛ - соответственно конвективный и лучистый коэффициент теплоотдачи, Вт/(м2×К);
d - толщина ограждающей конструкции, м;
С(Т) - теплоемкость материала конструкции при температуре Т(у), Дж/(кг2×К);
l(Т) - теплопроводность материала конструкции при температуре Т(у), Вт/(м×К);
Тw, Т0 - температура соответственно обогреваемой части конструкции и среды у не обогреваемой поверхности, К;
r - плотность материала конструкции, кг/м.
Тепловые и массовые потоки через проем в каждый момент времени рассчитываются с учетом текущего перепада давления по высоте проема, состава и температуры газовой среды по обе стороны проема (схема расчета на рис. П6.1). Так, массовый расход дыма из помещения очага пожара в соседнее помещение рассчитывается следующим образом:
(П6.41)
где В - ширина проема, м;
x - аэродинамический коэффициент проема;
P(h)-P2(h) - разница давлений в помещениях на высоте h;
r - плотность дыма в задымленной зоне соседнего помещения при температуре дыма Т.
Рис. П6.1
Массопотоки через проем
Пределы интегрирования Ymax и Ymin выбираются в пределах створа проема, слоя дыма помещения очага пожара и там, где избыточное давление DP = [P(h)-P2(h)] > 0, как это указано на рис. П6.1.
Необходимая для оценки перепада давления по створу проема зависимость давления от высоты в i-ом помещении (с учетом задымленной зоны этого помещения) оценивается как:
(П6.42)
где Pi0 - текущее давление в i-ом помещении на нулевой отметке (или приведенное к нулевой отметке, если уровень пола помещения выше нулевой отметки);
r0 - плотность воздуха при начальной температуре T0;
Zi - текущая высота незадымленной зоны в i-ом помещении.
Рассчитанные параметры тепломассообмена в проеме используются как граничные условия для соседнего помещения.
V. Полевой метод моделирования пожара в здании
Основой для полевых моделей пожаров являются уравнения, выражающие законы сохранения массы, импульса, энергии и масс компонентов в рассматриваемом малом контрольном объеме.
Уравнение сохранения массы:
Уравнение сохранения импульса:
(П6.44)
Для ньютоновских жидкостей, подчиняющихся закону Стокса, тензор вязких напряжений определяется формулой:
(П6.45)
Уравнение энергии:
(П6.46)
где
- статическая энтальпия смеси;
Hk - теплота образования k-го компонента;
- теплоемкость смеси при постоянном давлении;
qRj - радиационный поток энергии в направлении xj.
Уравнение сохранения химического компонента k:
Для замыкания системы уравнений (П6.43)-(П6.47) используется уравнение состояния идеального газа. Для смеси газов оно имеет вид:
(П6.48)
где R0 - универсальная газовая постоянная;
Mk - молярная масса k-го компонента.
Текст документа соответствует источнику
Расположен в: |
---|
Источник информации: https://internet-law.ru/stroyka/text/56400
На эту страницу сайта можно сделать ссылку:
На правах рекламы:
© Антон Серго, 1998-2024.
|
Разработка сайта |
|