Полное меню
Примечание. Значения Rbt не зависят от вида бетона. Приложение 3
|
Условия работы конструкции |
Проектные марки бетона по морозостойкости при средней температуре воздуха самого холодного месяца |
|
-15°С и выше |
ниже -15°С |
|
Попеременное замораживание и оттаивание в водонасыщенном состоянии |
200 |
300 |
Попеременное замораживание и оттаивание в воздушно-влажном состоянии |
150 |
200 |
При отсутствии знакопеременной температуры в тоннеле |
100 |
150 |
Бетон |
Марка бетона по средней плотности |
Начальный модуль упругости бетона при сжатии и растяжении ЕbX10-3, МПа при классе бетона по прочности на сжатие |
||||||
В12,5 |
В15 |
В20 |
В22,5 |
В25 |
В27,5 |
В30 |
||
Тяжелый |
Д2200-Д2500 |
- |
23,0 |
27,0 |
28,5 |
30,0 |
31,2 |
32,5 |
Легкий |
Д1600 |
13,2 |
14,0 |
15,5 |
16,0 |
16,5 |
17,0 |
17,5 |
|
Д1700 |
14,0 |
14,7 |
16,2 |
16,8 |
17,5 |
18,0 |
18,5 |
|
Д1800 |
14,7 |
15,5 |
17,0 |
17,7 |
18,5 |
19,0 |
19,5 |
|
Д1900 |
15,8 |
16,7 |
18,3 |
19,0 |
19,7 |
20,0 |
20,7 |
|
Д2000 |
17,0 |
18,0 |
19,5 |
20,2 |
21,0 |
21,5 |
22,0 |
А. Подбор состава бетона
Подбор состава бетона следует производить в соответствии с ГОСТ 27006-86.
Целью подбора состава бетона является определение такого соотношения между исходными материалами, при котором гарантируется необходимая прочность, морозостойкость и водонепроницаемость бетона в монолитных конструкциях с учетом технологии изготовления и укладки бетонной смеси, а также экономичности бетона (минимальный расход цемента или минимальная стоимость).
Составы бетонов с пластифицирующими добавками подбирают так же, как и для обычного бетона, а затем проводят пробные замесы и в случае необходимости - корректировку состава.
При использовании воздухововлекающих, а также некоторых пластифицирующих добавок в составе бетонной смеси следует учитывать соответствующее количество вовлеченного воздуха.
Расход воды и объемное содержание песка в смеси заполнителей рекомендуется определять в зависимости от наибольшего размера зерен крупного заполнителя по таблице.
Расход цемента Ц определяется из следующего соотношения:
где В - содержание воды, л; Д¢ - количество вовлеченного воздуха, %, устанавливаемое в зависимости от требуемой морозостойкости и водонепроницаемости (в соответствии с ВСН 150-93); Rб и Rц - соответственно проектная прочность бетона в возрасте 28 суток и активность цемента, МПа.
По формуле (2) определяется абсолютный объем заполнителей
где gц - плотность цемента, г/см3.
Расход песка и щебня устанавливается по формулам:
, кг, (4)
где r - объемное содержание в смеси заполнителей; gп и gщ - соответственно плотность песка и щебня, г/см3.
Наибольший размер зерен заполнителя, мм |
Водопотребность бетонной смеси, л/м3 |
Объемное содержание песка в смеси заполнителей, %, при воздухосодержании |
Содержание фракций в крупном заполнителе, %, при размере зерен, мм |
||||
2 |
4 |
6 |
5-10 |
10-20 |
20-40 |
||
10 |
225 |
40 |
35 |
33 |
100 |
- |
- |
20 |
215 |
38 |
34 |
32 |
25-40 |
65-75 |
- |
40 |
200 |
36 |
33 |
31 |
15-25 |
20-35 |
40-65 |
Примечания: 1. Таблица составлена для бетонных смесей подвижностью 10-15 см, приготовленных на щебне с водопоглощением до 1,5%, песка с модулем крупности 2 и цементе с нормальной густотой 26-28%.
2. При изменении модуля крупности на ±0,1 объемное содержание песка изменяется соответственно на ±0,5%.
При изменении нормальной густоты цементного теста на ±1% расход воды следует изменить соответственно на ±3-5 л на 1 м3.
При использовании суперпластификаторов водопотребность равноподвижных смесей снижается на 15-25%.
Оптимальная дозировка пластифицирующей добавки выбирается в соответствии с табл. 4 ВСН 150-93 и должна соответствовать возможно меньшему расходу воды на 1 м3 бетонной смеси по сравнению с равно-подвижной смесью, приготовленной без добавок при сохранении прочности бетона в возрасте 28 сут.
Дозировка воздухововлекающей добавки устанавливается в зависимости от требуемого воздухосодержания (см. ВСН 150-93). При этом следует иметь в виду, что воздухосодержание увеличивается с ростом подвижности бетонной смеси, увеличением количества песка в смеси заполнителей и при более интенсивном перемешивании и понижается с увеличением расхода цемента, повышением температуры бетонной смеси, увеличением времени транспортировки и виброукладки бетонной смеси.
Необходимое количество (по массе) дозируемого раствора добавки Рр.д, кг, определяется по формуле
где Д - дозировка добавки, % массы цемента; Ц - расход цемента на 1 м3 бетона, кг; С - концентрация раствора добавки, %.
Если раствор добавки дозируется по объему Vр.д, л, то последний рассчитывается по формуле
, (6)
где gр.д - плотность раствора, г/см3.
В случае необходимости сокращения цикла бетонирования и, в частности, времени выстойки монолитного бетона в опалубке, в бетонную смесь вводят микрокремнезем, при применении которого следует учитывать возможное влияние на процессы отвердения, сокращение «жизнеспособности» бетонной смеси - времени (с момента приготовления), в течение которого сохраняются необходимые по технологии формовочные свойства бетонной смеси.
Путем проведения пробных замесов определяют подвижность и воздухосодержание бетонной смеси и в случае необходимости корректируют расход воды, объемное содержание песка и дозировку добавок.
Б. Пример подбора состава бетона
Необходимо подобрать состав бетона класса В25 (30 МПа), морозостойкостью F 200. Бетонная смесь подается в опалубку пневмобетононасосом и должна иметь подвижность 10 см. Для приготовления бетона используются портландцемент марки 400 с плотностью 3,1 г/см3 и нормальной густотой цементного теста 27%, природный песок с модулем крупности 2,2 (плотность породы 2,65 г/см3), гранитный щебень фракции 5-20 (плотность породы 2,57 г/см3).
1. По табл. 1 приложения 1 BCН 150-93 определяем первоначальную водопотребность бетонной смеси
В1=175 л.
2. По табл. 4 ВСН 150-93 устанавливаем, что при В/Ц 0,41-0,50 и наибольшей крупности щебня 20 мм воздухосодержание бетонной смеси Д для получения морозостойких бетонов (F до 300) должно составлять 2-4%.
3. По формуле (1) рассчитываем расход цемента
кг.
4. Определяем водоцементное отношение
.
Это В/Ц соответствует выбранному по п. 2 и не требует корректировки водопотребности согласно примечанию к таблице.
5. По формуле (2) рассчитываем абсолютный объем заполнителей
л.
7. По табл. 2 приложения 1 ВСН 150-93 находим объемное содержание песка в смеси заполнителей
r1=33%.
После корректировки по примечанию 2 к таблице: rп=43%.
8. По формулам (3) и (4) вычисляем расходы песка и щебня:
кг/м3,
кг/м3.
9. При расходе комплексной добавки (ЛСТМ-2+СНВ) соответственно 0,2 и 0,005% от массы цемента их количество в пересчете на сухой продукт составит 1,05 и 0,026 кг.
При использовании ЛСТМ-2 и СНВ в виде растворов соответственно 10- и 5- % концентрации их объем составит согласно формулам (5) и (6):
л,
л.
Добавка |
Плотность растворов добавок, кг/м3 при концентрации % |
|||||||||
5 |
7 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
|
С-3 |
1020 |
1030 |
1045 |
1069 |
1090 |
1116 |
1148 |
1180 |
1205 |
- |
ЛСТМ-2 |
1021 |
1029 |
1043 |
1067 |
1091 |
1117 |
- |
- |
- |
- |
СДБ |
1021 |
1029 |
1043 |
1068 |
1091 |
1117 |
1144 |
1173 |
1202 |
1266 |
СНВ |
1015 |
1021 |
1030 |
1045 |
1060 |
1075 |
1089 |
1105 |
1120 |
- |
СДО |
1008 |
1012 |
1017 |
1025 |
1034 |
1043 |
1052 |
1060 |
1009 |
- |
УПБ |
1019 |
1028 |
1040 |
1061 |
1083 |
1106 |
1129 |
1154 |
1179 |
1232 |
ЩСПК |
1031 |
1046 |
1066 |
1099 |
1132 |
1165 |
1198 |
- |
- |
- |
АЦФ-3 |
1020 |
1026 |
1033 |
1058 |
1088 |
- |
- |
- |
- |
- |
Таблица П.6.2
Таблица перехода количества добавки «Альфа» на жидкое вещество с сухого в зависимости от концентрации (содержания сухого остатка в добавке)
Количество добавки «Альфа, % от массы цемента |
Количество добавки «Альфа» на сухое вещество, % от массы цемента, при концентрации (содержании сухого остатка), % |
|||
4 |
5 |
6 |
7 |
|
0,25 |
0,0100 |
0,0125 |
0,0150 |
0,0175 |
0,50 |
0,020 |
0,025 |
0,030 |
0,035 |
0,75 |
0,030 |
0,0375 |
0,0450 |
0,0525 |
1,00 |
0,040 |
0,050 |
0,060 |
0,070 |
2,00 |
0,080 |
0,100 |
0,120 |
0,140 |
4,00 |
0,160 |
0,200 |
0,240 |
0,280 |
6,00 |
0,240 |
0,300 |
0,360 |
0,420 |
8,00 |
0,320 |
0,400 |
0,480 |
0,560 |
10,00 |
0,40 |
0,50 |
0,60 |
0,70 |
15,00 |
0,60 |
0,75 |
0,90 |
1,05 |
20,00 |
0,80 |
1,00 |
1,20 |
1,40 |
25,00 |
1,00 |
1,25 |
1,50 |
1,75 |
30,00 |
1,20 |
1,50 |
1,80 |
2,10 |
35,00 |
1,40 |
1,75 |
2,10 |
2,45 |
50,00 |
2,00 |
2,5 |
3,0 |
4,0 |
75,00 |
3,00 |
3,75 |
4,50 |
5,25 |
100,00 |
4,00 |
5,0 |
6,0 |
7,0 |
Техническая характеристика
Вид станционный, дискретного действия, двухкомпонентный
Дозируемые продукты жидкие
Химические добавки растворы солей, суспензии, эмульсии поверхностно-активных веществ
Концентрация растворов, % 0,5-20
Вязкость близка к вязкости воды
Плотность, г/см3 1-1,3
Пределы дозирования, кг 1,5-30
Длительность цикла дозирования, с не более 45
Объем грузоприемного устройства, л 50
Цена деления шкалы циферблатного указателя, кг 0,1
Класс точности 1,5
Управление дозатором электропневматическое
Питание от сети переменного тока напряжением 220 В, частотой 50 Гц
Потребляемая мощность, кВт 0,5
Питание воздухом от пневмосети давлением 0,4-0,6 МПа
Расход воздуха (по всасыванию), мг не более 0,5
Габаритные размеры, см 1375Х1300Х1500
Масса дозатора, кг 280
Количество задаваемых доз:
исполнение 1 до трех
исполнение 2 до шести
Требуемое исполнение указывается заказчиком, при отсутствии указания поставляется исполнение 1.
Дозатор должен работать и комплекте с весовыми автоматическими дозаторами для остальных составляющих бетонной смеси. Управление осуществляется с пульта оператора БСУ.
Для дозирования водных растворов химических добавок в бетонную смесь используется установка, разработанная ВНИИ транспортного строительства, на базе серийно выпускаемого дозировочного агрегата НД.
Установка обеспечивает объемное напорное дозирование центральных и слабоагрессивных жидкостей и суспензий с концентрацией твердой неабразивной фазы до 10% по массе и кинематической вязкостью до 8Х104 м2/ceк.
Рис. П.8. Принципиальная схема дозирующего устройства:
1 - пульт управления с цифровым индикатором и галетными переключателями; 2 - дозировочный агрегат; 3 - датчик качков; 4 - всасывающий шланг; 5 - емкость с химической добавкой; 6 - нагнетательный шланг; 7 - бетономеситель
Дозаторы осуществляют автоматическое отмеривание любых заданных доз в диапазоне от 0,5 до 20 л и их подачу в бетоносмеситель При этом отпадает необходимость предварительной подачи и устройства расходных баков в бункерном отделении БСУ, т.к. функции перекачки и дозирования раствора сосредоточены в одном блоке.
Погрешность дозирования не превышает норм, предусмотренных ГОСТ 7473-85.
Управление работой устройства выведено на пульт оператора БСУ.
Установка отличается простотой и надежностью в эксплуатации, может использоваться на бетонных заводах как периодического, так и непрерывного действия с рабочей производительностью до 40 м3/час.
Техническая характеристика
Потребляемая мощность, кВт 22
Масса, кг 150
Габаритные размеры, мм
длина 900
ширина 310
высота 800
высота подачи раствора, м до 50
Пульт управления 1 (рис П.8) расположен в кабине оператора БСУ. Необходимая доза добавки останавливается согласно заданию двумя галетными переключателями Г1 и Г2. Для включения дозирующего агрегата 2 нажимается пусковая кнопка. В процессе работы установки с помощью датчика 3 на индикаторных лампах высвечиваются цифры, показывающие объем отдозированной жидкости, которая одновременно перекачивается из приготовительной емкости 5 всасывающим 4 и нагнетательным 6 шлангами в бетоносмеситель 7. Когда цифры на индикаторных лампах достигнет величины заданной дозы, остановка прекращает работу автоматически. Затем аппарат автоматически устанавливается в исходное положение, на индикаторных лампах высвечиваются нули установка готова к следующему дозированию.
Время работы установки связано с циклом дозирования компонентов и приготовления бетонной смеси. Затраты времени на подачу добавки из расходной емкости в бетоносмеситель минимальны. В частности, для отмеривания и перекачки 10 л раствора добавки требуется не более 10-15 секунд.
Продолжительность перемешивания должна определяться строительной лабораторией опытным путем.
За начало перемешивания принимается момент окончания загрузки всех материалов в смеситель, за окончание перемешивания - начало выгрузки из него смеси.
Критерием качества перемешивания бетонной смеси рекомендуется считать величину коэффициента вариации прочности в серии контрольных образцов-кубов, приготовленных из одного замеса. Опытное определение продолжительности перемешивания в производственных бетоносмесителях следует осуществлять, удостоверившись, что коэффициент вариации прочности образцов-близнецов, приготовленных в лаборатории, не превышает 4-5%.
Для установления необходимой продолжительности перемешивания рекомендуется опытным путем определить зависимость V(f), где V - коэффициент вариации образцов-близнецов, изготовленных из проб одного замеса; t - продолжительность перемешивания.
Достаточной является продолжительность перемешивания, соответствующая выполаживанию кривой на графике (рис. П.9).
Для построения зависимости V=f(t) готовят несколько замесов бетонной смеси с различной продолжительностью перемешивания, например 45, 60, 75, 90, 120 с. Каждой из них должны соответствовать три опытных замеса.
Минимальную продолжительность перемешивания рекомендуется принимать для бетоносмесителей принудительного перемешивания 45 с, для гравитационных - 60 с.
Рис. П.9. График зависимости коэффициента вариации прочности V от продолжительности перемешивания t
Пробы для изготовления контрольных образцов-кубов следует отбирать сразу после перемешивания. Пробы должны отбираться равномерно по мере выгрузки замеса из всех его частей. Для изготовления образцов нужно отобрать не менее 10 проб, а образцов-кубов из одного замеса - не менее 20.
Изготовление и испытание образцов следует производить по ГОСТ 10180-78.
Для ускорения получения результатов рекомендуется испытывать образцы на прочность после 7 суток хранения в нормально-влажных условиях или после тепловлажностной обработки в лабораторной камере.
В последнем случае необходимо соблюдать одинаковый режим обработки для всех образцов, а испытание проводить не ранее чем через 4 ч после окончания тепловлажностной обработки.
Коэффициент вариации прочности образцов бетона, приготовленных из проб, соответствующих каждой продолжительности перемешивания, принимается равным среднему из трех, полученных в каждом опытном замесе.
При отсутствии данных опытной проверки наименьшая продолжительность перемешивания в смесителях циклического действия принимается по таблице.
Объем готового замеса смесителя, л |
Продолжительность перемешивания, с, в смесителях |
|||
гравитационных |
принудительного перемешивания |
|||
смеси с осадкой конуса, см |
||||
менее 2 |
2-5 |
более 6 |
||
500 и менее |
100 |
75 |
60 |
60 |
Более 500 |
150 |
120 |
90 |
60 |
Рекомендуется периодически проверять качество перемешивания, зависящее от износа и правильности установки лопастей бетоносмесителя. Подобная проверка заключается в сравнении содержания крупного заполнителя в пробах, отобранных в начале, середине и конце выгружаемого замеса.
Количество крупного заполнителя в пробе определяется мокрым рассевом на сите с отверстиями 5 мм. Разность в содержании крупного заполнителя в трех пробах не должна превышать 5%.
Марки бетоносмесительных установок |
Производительность, м3/ч |
Кол-во фракций заполнителей |
Максимальная крупность заполнителя, мм |
Установленная мощность, кВт |
Масса, т |
Тип |
Завод-изготовитель |
СБ-140А |
До 12 |
3 |
70 |
27,1 |
9 |
Цикличная, мобильная, зимняя до минус 15°С |
Славянский завод Минстройдормаша |
СБ-185 |
22,5 |
4 |
70 |
36 |
17,5 |
Цикличная, инвентарная, летняя |
Тюменский завод Минстройдормаша |
СБ-176 |
20 |
4 |
70 |
50 |
31,5 |
Цикличная, блочно-перебазируемая зимняя -20°С |
Тюменский завод Минстройдормаша |
СБ-167 |
60 |
4 |
70 |
215 |
100 |
Цикличная, блочно-перебазируемая, зимняя -30 С |
Славянский завод Минстройдормаша |
СБ-164 |
120 |
3 |
120 |
300 |
180 |
Цикличная, мобильная, летняя |
Славянский завод Минстройдормаша |
СБ-171 СБ-145: |
60 |
4 |
70 |
110 |
95 |
Цикличная, зимняя, до -15°С |
Славянский завод Минстройдормаша |
2 |
40 |
4 |
70 |
87 |
48 |
Цикличная, блочно-перебазируемая до –30°C |
Славянский завод Минстройдормаша |
3 |
40 |
4 |
70 |
90 |
50 |
Цикличная, блочно-перебазируемая, зимняя до -30°С |
Славянский завод Минстройдормаша |
СБ-109Б |
135 |
3 |
70 |
290 |
136 |
Непрерывного действия, мобильная, летняя |
Славянский завод Минстройдормаша |
БСУ-1 (М-1) |
52 |
4 |
70 |
125 |
50 |
Цикличная, мобильная, летняя |
Минуралсибстрой |
5817 (Н-500) |
32 |
4 |
70 |
50 |
27,6 |
Цикличная, перебазируемая, летняя |
Рижский ремонтно-механический завод Минтрансстроя по кооперации с германской фирмой |
АБСУ-750 |
15 |
4 |
70 |
53 |
32 |
Цикличная, зимняя до -15°С |
Тульский ремонтно-механический завод Минтрансстроя |
СБ-75А |
30 |
3 |
40 |
37,5 |
21,5 |
Непрерывного действия, летняя |
Славянский завод Минстройдормаша |
АБСУ-15 |
15 |
5 |
70 |
60 |
81 |
Цикличная, зимняя до минус 15°С |
Тульский ремонтно-механический завод Минстройдормаша |
Примечания: 1. Бетоносмесительная установка СБ-145-3 выпускается с микропроцессорной системой управления и дозаторами с тензометрическим способом взвешивания.
2. СБ-167 оборудована двумя принудительными смесителями роторного типа СБ-138А.
3. СБ-171 оборудована принудительным смесителем роторного типа (объем готового замеса 1250 л) и дозаторами с тензометрическим способом взвешивания (см. приложение 6).
4. СБ-164 выпускается в блочно-мобильном исполнении с гравитационным бетоносмесителем (объем готового замеса 5000 л), оборудована управляющей вычислительной системой.
5. СБ-109Б выпускается с гравитационным смесителем непрерывного действии в блочном исполнении.
6. БСУ-1 оборудована бункерно-дозировочно-смесительным блоком, паропроизводящим контейнером, двумя силосами для хранения цемента.
7. Установка 5817 типа Н-500 партерного типа с секторным складом заполнителей, оборудованным стреловым скрепером, смесительно-дозировочным узлом и двумя силосами цемента.
Рис. П.10. Общие виды бетоносмесительных установок:
СБ-145 – 1 - блок бункеров заполнителей; 2 - галерея с ленточным конвейером; 3 - смесительно-дозировочный блок; 4 - воронка; 5 - блок химических добавок; 6 - склад цемента; 7 - блок управления; СБ-171 – 1 - блок заполнителей; 2 - блок управления; 3 - смесительно-дозировочный блок; 4 - расходные бункера цемента.
Рис. П.10. (продолжение):
БСУ-20 – 1 - блок заполнителей; 2 - блок смесительный; 3 - конвейер; 4 - склад цемента; 5 - блок управления; 6 - блок химической добавки; 7 - бетоносмеситель; 8 - загрузочная воронка; 9 - система технологического водоснабжения; 10 - скип; 11 - блок водоснабжения и дозаторный; СБ-109Б – 1 – конвейер; 2 - бункера заполнителей; 3 - блок дозирования цемента; 4 - блок управления: 5 - галерея с ленточным конвейером; 6 - смесительный блок.
Показатели |
Марки автобетоносмесителей |
|||||||||
1036 Б (СБ-69Б) |
СБ-92 |
СБ-92-la |
СБ-92В-1 |
СБ-159А* |
АБС-6* |
СБ-127 |
АБС-03 |
СБ-130* |
АБС-4Т-12*** |
|
Базовый автомобиль |
МА3-503 |
КрАЗ-258 |
КамАЗ-5511 |
КамАЗ-5511 |
КамАЗ-5511 |
КрАЗ-250 |
КрАЗ-6505 |
КамАЗ-53213 |
КамАЗ-54112** |
КрАЗ-250 |
Объем готового замеса, м3 |
2,6 |
4 |
4 |
4,5 |
5 |
6 |
6 |
6 |
10 |
4 |
Геометрический объем смесительного барабана, м3 |
6,1 |
6,1 |
6,1 |
6,1 |
8 |
12 |
12 |
12 |
14 |
6,1 |
Вместимость бака для воды, л |
630 |
850 |
850 |
750 |
400 |
400 |
400 |
400 |
1500 |
400 |
Мощность бетоносмесителя, кВт |
30 |
37 |
40 |
37 |
59 |
58 |
56 |
54 |
55 |
58**** |
Частота вращения барабана, об/мин |
8...12 |
6...12 |
6...12 |
6...12 |
8...20 |
8...14 |
8...12 |
8...14 |
6...12 |
8…14 |
Высота загрузки, м |
3,4 |
3,5 |
3,3 |
3,3 |
3,4 |
3,7 |
3,4 |
3,5 |
3,7 |
3,7 |
Максимальная скорость движения по автодорогам, км/ч |
60 |
60 |
60 |
60 |
60 |
90 |
60 |
60 |
60 |
90 |
Габаритные размеры, м: |
|
|
|
|
|
|
|
|
|
|
длина |
6,63 |
8,03 |
7,50 |
7,35 |
8,00 |
8,60 |
8,80 |
9,00 |
10,0 |
8,60 |
ширина |
2,63 |
2,65 |
2,50 |
2,50 |
2,50 |
2,65 |
2,65 |
2,50 |
2,5 |
2,65 |
высота |
3,42 |
3,52 |
3,45 |
3,35 |
3,60 |
3,60 |
3,65 |
3,60 |
3,7 |
3,60 |
Масса автобетоносмесителя, т: |
|
|
|
|
|
|
|
|
|
|
порожнего |
9,1 |
12,3 |
10,2 |
10,4 |
9,8 |
13,3 |
14,0 |
10,2 |
10,7 |
12,3 |
загруженного |
15,3 |
21,9 |
19,2 |
19,2 |
19,2 |
22,9 |
22,5 |
22,0 |
36,0 |
21,9 |
* Бетоносмеситель оборудован обогревом для работы при температуре минус 30°С. ** Седельный тягач с полуприцепом. *** Автобетоносмеситель оборудован транспортером для подачи бетонной смеси к месту укладки. **** Суммарная мощность смесителя и транспортера. |
Показатели |
Шифр опалубки |
||||||||||||
ОПС-16 |
ОПР-1 |
МО-18 |
ОПС-62 |
Сага-Когио (Япония) |
ОПК-28 |
МО-21 |
ОПВ.63 |
«Вортингтон» (Италия) |
ОСС-1 |
OБC-1 |
|||
с полущитом ППШ-1 |
самостоятельно |
||||||||||||
Назначение опалубки по виду выработки |
разведочно-транспортные штольни |
однопутный ж.-д. тоннель, полное сечение |
однопутный ж.-д. тоннель, свод |
двухпутный ж.-д. тоннель, полное сечение |
двухпутный ж.-д. тоннель, свод |
односводчатые станции метрополитена открытого способа |
|||||||
Тип опалубки |
самоходная |
самоходная |
сборно-разборная |
секционная |
самоходная |
самоходная |
сборно-разборная |
переставная |
самоходная |
самоходная |
сборно-разборная |
||
Число секции, шт. |
3 |
3 |
3 |
3 |
8 |
2 |
9 |
9 |
9 |
3 |
1 |
1 |
|
Ширина секции, м |
3 |
3 |
1 |
4,5 |
1,5 |
1 |
1 |
1 |
1 |
3 |
6 |
8 |
|
Размер заходки, м |
9 |
9 |
9 |
13,5 |
12 |
9 |
9 |
1; 2 или 3 |
9 |
9 |
6 |
6 |
|
Габаритные размеры опалубки, м: |
|
|
|
|
|
|
|
|
|
|
|
|
|
Длина |
15,3 |
15,7 |
3,0 |
28,0 |
20,5 |
11,3 |
18,0 |
4,5 |
11,5 |
9,0 |
6,6 |
8,2 |
|
Ширина |
5,3 |
4,7 |
5,6 |
5,5; 6,0; 6,3 |
5,6 |
5,6 |
10,6 |
10,9 |
10,9 |
11,2 |
5,1 |
17,8 |
|
Высота |
3,4 |
4,1 |
7,6 |
9,0; 9,2; 9,6 |
8,2 |
4,7 |
5,7 |
5,6 |
5,6 |
5,4 |
5,4 |
7,25 |
|
Внутренний габарит тележки, портала, м: |
|
|
|
|
|
|
|
|
|
|
|
|
|
Ширина |
3,7 |
2,8 |
- |
3,4 |
3,2 |
2,8 |
2,6 |
3,7 |
3,7 |
3,6 |
- |
- |
|
Высота |
1,8 |
2,8 |
- |
3,4 |
3,2 |
3,5 |
2,8 |
3,6 |
3,6 |
3,7 |
- |
- |
|
Ширина колец (в осях рельсов), м |
4,02 |
1,02 |
- |
3,7 |
3,8 |
- |
4,4 |
4,2 |
4,2 |
4,5 |
1,8 |
11,3 |
|
Установленная мощность, кВт |
25 |
15 |
- |
52 |
10,3 |
16,5 |
52 |
27,5 |
55 |
106 |
29 |
10 |
|
Масса, т |
23 |
38,8 |
- |
160,6 |
100 |
45,9 |
174 |
94,8 |
108,1 |
110 |
22,7 |
- |
|
1. Опалубка самоходная ОПС-16 (СКТБ ГТМ)
Опалубка самоходная ОПС-16 (рис. П.12.1) предназначена для механизации возведения монолитной обделки сводовой части транспортных штолен при проходке двумя уступами 9-метровыми заходками. Опалубка состоит из трех секций 1, каждая из которых установлена на самостоятельной тележке 5. В механизм отрыва опалубки от бетона входят гидроцилиндры 4, действующие через систему рычагов 3, 7. Основные сегменты 6 дополнены инвентарной вставкой для корректировки размера свода согласно проекту. В комплект опалубки входит тележка с секциями бетоновода 2 и секции воздуховода. Опалубка оборудована центральным гидро- и электропультом.
Бетон по бетоноводу подают через передний торец в заопалубочное пространство.
Рис. П.12.1. Опалубка самоходная ОПС-16:
1 - секции; 2 - тележка для бетоновода; 3 - рычат; 4 - гидроцилиндры отрыва; 5 - тележка секции; 6 - створка; 7 - трехгранные рычаги; 8 - вставка; 9 - короб воздуховода.
Габаритные размеры опалубки: длина - 15,3 м; ширина - 5,3 м; высота - 3,4 м.
Внутренние размеры портала обеспечивают проход транспорта проходческого комплекса. Ширина колеи тележек по осям рельсов - 4,02 м, масса опалубки - 23 т.
2. Самоходная опалубка ОПР-1 (СКТБ ГТМ)
Опалубка предназначена для возведения монолитной бетонной обделки транспортной штольни и других тоннелей на полное сечение.
Опалубка состоит (рис. П.12.2) из трех секций 1, опорных балок 3, механизма отрыва 5 и передвижения, подвижных подмостей 2, электро- и гидросистем.
Собранная и отрегулированная, полностью состыкованная опалубка устанавливается по маркшейдерским замерам в выработке. Через люки и патрубки 4 для подвода бетона производят бетонирование. Отрыв производят по секциям эксцентриковым механизмом. Сначала поднимается и отрывается основание секции и опалубка устанавливается на направляющие опорных балок. Двумя межсекционными цилиндрами секция № 1 перемешается на 1,5 м, затем - вторая и третья.
Последовательным сдвигом вся опалубка перемещается на 9 м, и цикл повторяется.
Рис П.12.2. Самоходная опалубка ОПР-1:
1 - секция, 2 – подмости; 3 – балка; 4 - патрубок бетоновода; 5 - механизм отрыва
3. Сегментная сборно-разборная опалубка МО-18 (СКТБ ММЗ ГТМ)
Опалубка МО-18 предназначена для возведения отдельных участков небольшой протяженности - до 500 м монолитной обделки однопутных железнодорожных тоннелей. Она состоит из (рис П.12.3) отдельных стальных сегментов, сболчиваемых в секцию шириной в один метр. Секции также соединяются между собой болтами. Сборка и разборка элементов ведется при помощи рычажного механизма, установленного на самоходной портальной тележке, передвигающейся по подошве выработки и по направляющим, установленным на кронштейнах нижних закрепленных сегментов опалубки.
В сегментах устраивают проемы («окна») для укладки бетона в заопалубочное пространство бетоноводами.
Габаритные размеры собранных секций опалубки соответствуют типовому сечению однопутного железнодорожного тоннеля: высота - 7,63 м, ширина - 5,06 м, длина секции – 1 м. Размер заходки принимают от 3 до 9 м в зависимости от условий проходки и ведения бетонных работ.
Рис. П.12.3. Секция сегментной сборно-разборной опалубки МО-18:
1 - секция; 2 - сегмент; 3 - направляющие; 4 - проемы
4. Самоходная опалубка «Сага-Когно» (Япония)
Опалубка фирмы «Сага-Когно» предназначена для механизации возведения монолитной бетонной обделки однопутного железнодорожного тоннеля, разрабатываемого на полное сечение. Опалубка (рис. П.12.4) опирается на тележку 1, представляющую собой каркасную металлическую конструкцию с верхним и нижним порталами. Опалубка состоит из одного верхнего 3, двух боковых сегментов 4 и двух нижних 6. Оборудование опалубки состоит из гидродомкратов 2, гидроцилиндров 5 для установки и отрыва сегментов от затвердевшего бетона, пульта управления.
Общая длина опалубки 20,5 м обеспечивает заходку в 20 м. Ширина и высота опалубки соответственно равны 5,6 и 8,2 м. Ширина колеи тележки 3800 мм. Габариты портала тележки в свету для пропуска транспорта: ширина 3,3 м, высота - 3,2 м. Масса опалубки - 100 т. Мощность пневмодвигателя перемещения опалубки - 10,3 кВт.
Рис. П.12.4. Самоходная металлическая опалубка «Сага-Когно»:
1 - тележка; 2 – гидродомкрат; 3 - верхняя секция; 4 - боковая секция; 5 - гидроцилиндры; 6 - нижняя секция
5. Опалубка самоходная ОПК-28 (СКТБ ГТМ)
Опалубка самоходная ОПК-28 (рис. П.12.5) предназначена для механизации возведения монолитной бетонной обделки свода однопутного железнодорожного тоннеля.
Опалубка состоит из двух секций 1. Механизм отрыва состоит из верхних и нижних гидроцилиндров отрыва 2. Перемещение каждой секции осуществляется отдельно с помощью гидроцилиндров 3. Внутренние габариты опалубки обеспечивают проход самосвальных поездов на базе МоАЗ-64011. В рабочем состоянии секции опалубки состыкованы.
Размер заходки - 9 м, габаритные размеры опалубки: длина - 11,3, ширина - 5,6, высота - 4,7 м; масса опалубки - 45,9 т.
Рис. П.12.5. Опалубка самоходная ОПК-28:
1 - секция; 2 - гидроцилиндры привода отрыва; 3 - гидроцилиндры передвижки секции
6. Опалубка переставная ОПВ-65 (СКТБ ГТМ)
Опалубка предназначена для возведения монолитной железобетонной обделки свода двухпутного железнодорожного и автомобильного тоннеля как в комплекте с полущитом ППШ-1 (в слабых грунтах), так и обособленно (в устойчивых грунтах).
Опалубка состоит (рис. П.12.6) из комплекта секции 1, перестановщиков 2, снабженных гидроцилиндрами 3. Опалубка оснащена гидро- и электрооборудованием.
Работа опалубки в комплексе с полущитом. Перестановщик подается в зону, где ранее уложенный бетон набрал заданную прочность.
Гидроцилиндрами, закрепленными на секции, производится отрыв и укладка опалубки на перестановщик, который перекатывается на очередную захватку бетонирования, расположенную под защитой шандор полушита. Там секция фиксируется в проектном положении, соединяется с ранее установленными секциями и отсоединяется от перестановщика. Начинается новый цикл бетонирования.
При отсутствии щита комплект секции укладывается на два соединенных между собой перестановщика, образуя таким путем самоходную опалубку, которая позволяет вести бетонирование с длиной захватки 9 м.
Рис. П.12.6. Опалубка переставная секционная ОПВ-65:
1 – секция; 2 - перестановщик; 3 - гидроцилиндр
Техническая характеристика
Число секций, шт 9
Заходка в комплексе со щитом, м 1, 2 или 3
Заходка в комплексе без щита, м 9
Скорость перемещения, м/мин 4,8
Габаритные размеры опалубки, м:
длина в комплексе:
со щитом 4,5
без щита 11,5
ширина 10,9
высота 5,6
Внутренний габарит портала перестановщика:
ширина, м 3,7
высота, м 3,6
ширина колеи, мм 4200
Установленная мощность, кВт:
в комплексе со щитом 27,5
без шита 55
Масса, т:
в комплексе 94,8
без щита 108,1
7. Самоходная опалубка «Вортингтон» (Италия)
Самоходная сборно-разборная опалубка фирмы «Вортингтон» (Италия) предназначена для механизации возведения монолитной бетонной обделки сводовой части двухпутных железнодорожных тоннелей (рис. П.12.7). Опалубка может быть использована для возведения монолитной обделки и автодорожных двухполосных тоннелей.
Опалубка состоит из тележки 5, оборудованной пневмодвигателем, секций, составляемых из нижнего 2, среднего 3 и верхнего (добавочного) сегмента 4. Последний представляет собой дополнительную вставку для увеличения внутреннего радиуса обделки на 550 мм.
Секции и сегменты соединяют на болтах, отрыв сегментов от затвердевшего бетона осуществляют боковыми гидроцилиндрами 1.
Опалубка выставляется на проектные отметки вертикальными гидроцилиндрами тележки и анкерами 7 с использованием предварительно забетонированных участков крепи 8.
Полная длина собранных секций опалубки - 9 м. Минимальный радиус кривой, на которой может работать опалубка - 600 м. Габарит портала тележки в свету для пропуска транспорта: ширина - 3,6 м, высота - 3,7 м. Масса опалубки - 110 т.
Рис. П. 12.7. Самоходная сборно-разборная опалубка «Вортингтон»:
1 - гидроцилиндр; 2 - нижний сегмент; 3 - средний сегмент: 4 - верхний сегмент; 5 - тележка; 6 - воздуховод; 7 - анкеровка; 8 - элемент крепи
8. Опалубка станционная самоходная ОСС-1 (СКТБ ГТМ)
Опалубка самоходная станционная ОСС-1 предназначена для механизации возведения монолитных железобетонных стен односводчатых станций метрополитенов при открытом способе производства работ. Опалубка состоит (рис. П.12.8) из наружного 4 и внутреннего 3 бортов, смонтированных на платформе 1. Оборудование опалубки составляет гидросистема, питающая гидроцилиндры передвижения 2 и установки или отрыва 5 внутреннего борта, и электросетью. Наружный борт устанавливается винтовыми домкратами 7.
В пространство между щитами устанавливается арматурный каркас. Бетонирование ведут послойно без перерыва в пределах захватки с уплотнением глубинными вибраторами.
Размер заходки - 6 м, габаритные размеры опалубки с надстройкой: длина - 6,6, высота - 5,1, ширина - 5,1 м; толщина возводимой стены - до 0,9 м; масса опалубки - 22,7 т.
Рис. П.12.8. Опалубка станционная самоходная ОСС-1:
1 - платформа; 2 - гидроцилиндр передвижения; 3 - внутренний борт; 4 - наружный борт; 5 - гидроцилиндр отрыва; 6 - верхняя площадка; 7 - винтовой домкрат
9. Опалубка сборно-разборная самоходная ОБС-1 (СКТБ ГТМ)
Опалубка предназначена для бетонирования свода односводчатых станций метрополитенов при открытом способе производства работ (рис. П.12.9), Она служит основанием и шаблоном для монтажа арматурных каркасов и в качестве несущей конструкции бетона свода.
Опалубка состоит из несущей фермы 1, рамы 2, стяжек 3 для регулировки и установки опалубки, рабочих площадок 4, гидравлического механизма передвижения 5, пульта управления 6, домкратов 7, воспринимающих нагрузку уложенного бетона, гидроцилиндров подъема 8 и складывания 9 опалубки, винтовых опор 10, воспринимающих нагрузку от уложенного бетона в местах сопряжения со стенами, гидрооборудования 11 и электрооборудования 12.
Рис. П.12.9. Самоходная сборно-разборная опалубка ОБС-1:
1 - ферма; 2 – рама; 3 - стяжки; 4 – рабочие площадки; 5 - механизм передвижки гидравлический; 6 - пульт управления; 7 – винтовой домкрат; 8 - гидроцилиндр подъема; 9 - гидроцилиндр складывания; 10 - винтовая опора; 11 - гидрооборудование; 12 - электрооборудование
Техническая характеристика
Гидроцилиндры подъема, шт. - 4; рабочее давление, МПа - 10
Усилие прямого хода, Н - 122000; ход, мм - 400
Гидроцилиндры передвижения, шт. - 2; рабочее давление, МПа - 5
Усилие прямого хода, Н - 325000; ход, мм - 2000
Гидроцилиндры отрыва фермы, шт. - 2; рабочее давление, МПа - 5
Усилие прямого хода, Н - 325000
Винтовые домкраты, шт. - 4
Скорость движения опалубки, м/с - 0,03
Установленная мощность, кВт - 10
Техническая производительность, м/мес - 35
Габаритные размеры, м:
Длина - 8,2; ширина - 17,8; высота - 7,25
Размер заходки, м - 6
1. Пневмобетононагнетатель ПБН-3,3 (СКТБ ГТМ)
Пневмобетононагнетатель предназначен для приема, перемешивания и нагнетания бетонной смеси к месту укладки. Он состоит из цистерны, размещенной на платформе на рельсовом ходу шириной колеи 600 мм, загрузочного бункера, лопастного смесителя, разгрузочного устройства, пневмосистемы и электрооборудования. Лопастной смеситель работает при движении через привод от тележки и на стоянке от электродвигателя. Пневмосистема работает от магистрали сжатого воздуха. Разгрузочное отверстие оборудовано затвором на период транспортирования и соплом для равномерной подачи смеси под давлением.
Ширина колеи тележки нагнетателя может быть изменена путем перестановки кронштейнов и осей, входящих в комплект нагнетателя.
При диаметре бетоновода 150 мм и рабочем давлении 0,6 МПа подача смеси может быть осуществлена на расстояние по горизонтали до 160 м, по вертикали - до 15 м.
Таблица П.13.1
Технические характеристики пневмобетононагнетателей, применяемых при возведении монолитных тоннельных обделок
Показатели |
Марка пневмобетононагнетателей |
||||||||||
ПБН-3,3 |
ПБН-3,2 |
ПБН-3 |
SKC-30T |
SKC-30 |
ПБН-1,5 |
ПБН-1 |
БП-0,7 |
ПБН-0,5 |
ПБУ-5** |
ПН-0,5 |
|
Объем цистерны, м3 |
3 |
3 |
3 |
3 |
3 |
1,5 |
1,0 |
0,7 |
0,5 |
0,5 |
0,5 |
Дальность нагнетания, м: |
|
|
|
|
|
|
|
|
|
|
|
по горизонтали |
160 |
160 |
160 |
150 |
150 |
160 |
150 |
160 |
200 |
150 |
150 |
по вертикали |
15 |
15 |
15 |
10 |
10 |
15 |
15 |
15 |
35 |
15 |
20 |
Диаметр бетоновода, мм |
150 |
150 |
150 |
150 |
150 |
150 |
150 |
150 |
150 |
150 |
150 |
Рабочее давление, МПа |
0,6 |
0,6 |
0,6 |
0,7 |
0,7 |
0,6 |
0,6 |
0,6 |
0,6 |
0,7 |
0,5 |
Мощность привода вращения мешалки, кВт |
11,6 |
11,6 |
11,6 |
16,6 |
16,6 |
7,5 |
7,5 |
11,0 |
- |
- |
- |
Ширина колеи ж.-д. тележки, мм |
600 |
750;900 |
900 |
Автошасси |
800 |
600 |
600 |
600 |
900 |
стационарный |
стационарный |
Габаритные размеры, м: |
|
|
|
|
|
|
|
|
|
|
|
длина |
6,7 |
6,7 |
6,1 |
6,2 |
5,0 |
4,6 |
2,9 |
3,2 |
1,8 |
9,6 |
1,4 |
ширина |
1,3 |
1,3 |
1,3 |
2,5 |
1,3 |
1,1 |
1,2 |
1,4 |
1,3 |
2,6 |
1,2 |
высота |
2,2 |
2,5 |
2,0 |
3,2 |
1,8 |
1,8 |
1,8 |
2,3 |
2,0 |
3,8 |
2,0 |
Масса, т |
6,6 |
6,7 |
5,4 |
16,8 |
5,5 |
4,8 |
1,7 |
1,47 |
0,64* |
4,8 |
4,5 |
* Масса технологического оборудования без тележки. ** Загрузка скиповым подъемником. |
2. Пневмобетононагнетатель ПБН-3,2 (СКТБ ГТМ)
Пневмобетононагнетатель ПБН-3,2 (рис. П.13.1) предназначен для транспортирования готовой бетонной смеси, перемешивания и подачи ее за опалубку при возведении монолитных обделок; состоит из сосуда 1 с загрузочными люками 2, установленного на несущей раме 5, ходовая часть 7 которой выполнена на двух ж.-д. осях и снабжена пружинной подвеской с продольным балансиром. На одной из осей находится звездочка передающая крутящий момент на лопастной вал при движении. Лопастной вал 3 перемешивает бетонную смесь в сосуде через цепную передачу и редуктор 6. На стоянках лопастной вал вращает трехфазный асинхронный двигатель 4. Выгружают бетонную смесь сжатым воздухом через сопло 8, подсоединяемое к бетоноводу.
Нагнетатель перемещается по рельсам электровозом.
Техническая характеристика
Вместимость сосуда для бетонной смеси, м3 3
Диаметр бетоновода, мм 150
Дальность нагнетания бетона, м:
по горизонтали 160
по вертикали 15
Рабочее давление сжатого воздуха, МПа 0,6
Расход сжатого воздуха, м3/мин 0,8¸1,5
Мощность привода лопастного вала, кВт 11
Ширина колеи, мм 750 или 900
Рис. П.13.1. Пневмобетононагнетатель ПБН-3,2 (СКТБ ГТМ):
1 - сосуд (цистерна) высокого давления; 2 - загрузочный люк; 3 - лопастной вал; 4 – электропривод; 5 - несущая рама; 6 - редуктор; 7 - ходовая часть; 8 - выходной патрубок
3. Пневмобетононагнетатель ПБН-3 (СКТБ ГТМ)
Пневмобетононагнетатель ПБН-3 предназначен для транспортирования бетонной смеси по горизонтальным выработкам, перемешивания и подачи ее за опалубку.
Пневмобетононагнетатель (рис. П.13.2) состоит из емкости 1 с загрузочными люками 2 и выпускным патрубком 3. Внутри емкости расположен лопастной вал 4, приводимый по вращение электродвигателем 5 через ценную передачу. Емкость установлена на несущей раме 6 с ходовой частью 7.
При выгрузке бетонной смеси при длительных перерывах нагнетатель присоединяют к электрической сети для периодического перемешивания бетонной смеси. При нагнетании и выгрузке нагнетатель присоединяют к бетоноводу и магистральной линии воздуховода.
Техническая характеристика
Вместимость сосуда для бетонной смеси, м3 3
Дальность нагнетания бетонной смеси, м:
по горизонтали 160
по вертикали 15
Диаметр бетоновода, мм 150
Рабочее давление, МПа 0,6
Расход сжатого воздуха, м3/мин 0,8¸1,5
Мощность привода вращения лопастного вала, кВт 11
Масса пневмонагнетателя, т 5,4
Ширина колеи, мм 900
Рис. П.13.2. Пневмобетононагнетатель ПБН-3 на рельсовом ходу (СКТБ ГТМ):
1 - емкость; 2 - загрузочные люки; 3 - разгрузочный патрубок; 4 - лопастной вал; 5 - электропривод; 6 - несущая рама; 7 - ходовая часть
4. Пневмобетоноподатчик на пневмоходу «Скрю-Крит» (Модель SKC-30T, фирма «Сибата», Япония)
Пневмобетоноподатчик предназначен для приема, дополнительного перемешивания бетонной смеси и подачи ее к месту укладки по трубопроводам под давлением воздуха. Пневмобетоноподатчик (рис. П.13.3) смонтирован на автошасси «Мицубиси», состоит из емкости высокого давления 3 с размещенным в нем смесителем. Сосуд оборудован патрубком для нагнетания воздуха и выходным патрубком бетонной смеси 4. Привод 2 вращения смесителя работает от коробки отбора мощности автошасси.
Техническая характеристика
Загрузочная емкость, м3 3,0
Продолжительность разгрузки, мин 2,5¸4,5
Дальность подачи бетонной смеси, м, при
осадке конуса 18 см и расходе цемента 340 кг/м3:
по горизонтали до 150
по вертикали не более 10
Внутренний диаметр трубопровода, мм 150
Давление сжатого воздуха, кгс/см2 0,5¸7,0
Расход цемента не менее, кг/м3 220
Пределы осадки конуса, см 8¸20
Наибольшая крупность заполнителя, мм:
щебня 40
гравия 50
Габаритные размеры установки, м:
длина 6,25
ширина 2,48
высота 3,2
Масса в загруженном состоянии, т 16,8
Мощность двигателя, кВт 166
Рис. П.13.3. Пневмобетоноподатчик на пневмоходу «Скрю-крит» (модель SКС-30Т):
1 - автошасси «Мицубиси»; 2 – привод вращения смесителя; 3 - емкость высокого давления; 4 - выходной патрубок для бетонной смеси
5. Пневмобетоноподатчик на рельсовом ходу «Скрю-крит» (Модель SKC-30, фирма «Сибата», Япония)
Пневмобетоноподатчик модели SKC-30 предназначен для приема, дополнительного перемешивания бетонной смеси и подачи ее к месту укладки по трубопроводам под давлением воздуха. Пневмобетоноподатчик (рис. П.13.4) смонтирован на железнодорожной платформе 6 с шириной колеи тележек 800 мм. Он представляет собой емкость (цистерну) высокого давления 2 с размешенным и ней смесителем 4, оборудован устройством для нагнетания воздуха, загрузочным люком 3 и выпускным патрубком бетонной смеси 7.
Техническая характеристика
Загрузочная емкость, м3 3
Продолжительность разгрузки, мин 2,5¸4
Дальность подачи бетонной смеси (м) при
осадке конуса 15 см и расходе цемента 340 кг/м3:
по горизонтали до 150
по вертикали до 10
Внутренний диаметр трубопровода, мм 150
Давление сжатого воздуха, МПа до 0,7
Расход цемента, кг/м3 не менее 220
Пределы осадки конуса, см 8¸20
Наибольшая крупность заполнителя, мм:
щебня 40
гравия 50
Габаритные размеры установки, м:
Длина без сцепок 5,0
ширина 1,3
высота 1,8
Масса в незагруженном состоянии, т 5,5
Рис. П.13.4. Пневмобетоноподатчик на рельсовом ходу «Скрю-крит» (модель SKC-30):
1 - пульт управления; 2 - сосуд высокого давления; 3 - загрузочный люк; 4 - лопасти смесителя; 5 - привод; 6 - железнодорожная платформа; 7 - выпускной патрубок бетонной смеси
6. Пневмобетононагнетатель ПБН-1,5 (СКТБ ГТМ)
Пневмобетононагнетатель ПБН-1,5 предназначен для транспортирования, перемешивания и нагнетания бетонной смеси при возведении монолитной обделки транспортных тоннелей. Он состоит из платформы, включающей раму, буфер, сцепку, двухосную ходовую часть с жесткой базой; цистерны, состоящей из сосуда, подшипниковых узлов, вала, лопастей, рабочей площадки, загрузочных патрубков, люков и крышек; универсального привода; пневмосистемы; электрооборудования; затвора.
Пустой нагнетатель подают к бетоносмесительному устройству под загрузку с закрытым затвором и открытым загрузочным патрубком. Электропривод лопастного вала подсоединен к электросети с напряжением 380 В. Через загрузочный патрубок загружают бетонную смесь при включенном приводе лопастного вала. Заполненный нагнетатель отсоединяют от электросети и муфтой переключения лопастной вал через трансмиссию соединяют с ходовыми колесами. Электровозом нагнетатель доставляют к месту выгрузки, где к нему подсоединяют бетоновод, пневмомагистраль и электропитание. При включенном приводе лопастного вала открывают затвор и подают сжатый воздух, что обеспечивает выгрузку бетонной смеси. После промывки нагнетатель снова подают к месту загрузки.
Пружинная подвеска тележки нагнетателя обеспечивает плавность хода и уменьшает износ ходовой части. Возможность перемешивания бетонной смеси на ходу увеличивает расстояние транспортирования бетонной смеси. Загруженный объем смеси в количестве 1,5 м3 может быть подан по бетоноводу на расстояние по горизонтали до 160 м, по вертикали - до 15 м.
7. Пневмобетононагнетатель ПБН-1 (СКТБ ГТМ)
Пневмобетононагнетатель предназначен для приема, перемешивания, транспортирования бетонных растворных смесей к месту укладки по трубопроводам с помощью сжатого воздуха. Он состоит из сосуда, размещаемого на тележке на рельсовом ходу шириной колеи 600 мм, траверсы, стрелы, грейфера, пневмосистемы и гидросистемы. Бетонную смесь подают по трубопроводу диаметром 160 мм под давлением 0,6 МПа. Бетонную смесь загружают в сосуд из вагонетки грейферным перегрузочным устройством, горловину загрузочной воронки перекрывают пневмозапором, а воздух подают в верхнюю часть сосуда. При открывании затвора смесь выдавливается в трубопровод.
При производительности 4-6 м3/ч смесь может быть подана по горизонттали до 150 мм или по вертикали на высоту до 15 м.
8. Пневматический нагнетатель бетонной смеси ПБН-0,5
Пневматический нагнетатель (рис. П.13.5) предназначен для транспортирования бетонной смеси на расстояние до 150 м по бетоноводу сжатым воздухом.
Нагнетатель работает на бетонной смеси с осадкой конуса 8-10 см и заполнителями фракцией до 35 мм. Бетон выпускается в жесткую опалубку. При работе с легкой опалубкой требуется установка гасителя.
Нагнетатель представляет собой герметический сосуд грушевидной формы с приемной воронкой, колоколообразным затвором, выходной камерой и системой трубопроводов для подачи воздуха.
Рис. П. 13.5. Пневматический нагнетатель бетона ПН-0,5:
1 - герметичный сосуд; 2 - приемная воронка; 3 - затвор; 4 - пневмотрубопроводы; 5 - опоры
Нагнетатель установлен на опоры, высота которых определяется в зависимости от типа установки механизированной укладки бетона. К нагнетателю присоединяется бетоновод, состоящий из прямых и криволинейных звеньев с быстроразъемными соединениями, и ресивер емкостью 2 м3.
Техническая характеристика
Емкость сосуда, м3 0,5
Рабочее давление воздуха, атм 4-5
Диаметр бетоновода, мм 150
Емкость ресивера, м3 2
Масса установки, т 4,5
Таблица П.13.2
Технические характеристики бетононасосов, применяемых в тоннелестроении
Показатели |
Марки бетононасосов |
||||||||||||
СБ-126А |
BP80CV |
BP70E/D |
WP-74* «Роборама» |
БН-80-20 |
BP65CV |
BP60CV-НД |
ВР50Е/Д |
ВР50Е/Д-НД |
БН-40 |
БН-Т |
Бетоноподатчик |
БН-1 |
|
Тип бетононасоса |
КамАЗ-53213 |
автомобильный |
стационарный |
Краз-257 |
автомобильный |
автомобильный |
автомобильный |
стационарный |
стационарный |
прицепной |
на рельсовом ходу |
на рельсовом ходу |
на рельсовом ходу |
Производительность, м3/ч |
до 65 |
82 |
71 |
до 68 |
65 |
64 |
57 |
56 |
49 |
до 40 |
до 30 |
до 40 |
до 22 |
Емкость бункера, м3 |
0,7 |
0,45 |
0,45 |
0,7 |
0,4 |
0,45 |
0,45 |
0,45 |
0,45 |
0,4 |
0,5 |
0,8 |
0,5 |
Высота загрузки, м |
1,4 |
1,4 |
1,4 |
1,3 |
1,4 |
1,4 |
1,4 |
1,4 |
1,4 |
1,3 |
1,4 |
1,5 |
1,3 |
Дальность подачи, м: |
|
|
|
|
|
|
|
|
|
|
|
|
|
по горизонтали |
350 |
400 |
400 |
400 |
500 |
350 |
300 |
350 |
300 |
300 |
250 |
250 |
200 |
по вертикали |
60 |
70 |
80 |
80 |
180 |
70 |
70 |
70 |
60 |
40 |
40 |
35 |
20 |
Диаметр бетоновода, мм |
125 |
150 |
150 |
150...180 |
125 |
150 |
150 |
150 |
150 |
125 |
125 |
125 |
125 |
Мощность двигателя бетононасоса, кВт |
110 |
110 |
70 |
84 |
180 |
10 |
110 |
58 |
70 |
45 |
37 |
55 |
30 |
Габаритные размеры, м: |
|
|
|
|
|
|
|
|
|
|
|
|
|
длина |
10,0 |
11,4 |
11,4 |
10,7 |
11,1 |
11,2 |
11,2 |
11,0 |
11,0 |
5,45 |
3,80 |
4,45 |
3,80 |
ширина |
2,5 |
2,7 |
2,7 |
2,6 |
2,6 |
2,7 |
2,7 |
2,7 |
2,7 |
2,15 |
0,90 |
1,35 |
1,35 |
высота |
3,8 |
3,7 |
3,2 |
4,0 |
3,8 |
3,4 |
3,4 |
3,1 |
3,1 |
1,85 |
1,40 |
1,75 |
1,50 |
Масса бетононасоса, т |
15,5 |
21,0 |
8,0 |
19,0 |
22,6 |
18,5 |
18,5 |
7,0 |
7,4 |
4,2 |
2,0 |
1,6 |
3,2 |
* «Роборама» выпускается фирмой «Вортингтон» также в зимнем исполпенни (модель WP-74CW40); для работы в тоннелях используется специальная стрела ботоновода.
9. Автобетононасос «Роборама» (модель WP-74, фирма «Вортингтон», Италия)
Автобетононасос «Роборама» предназначен для возведения монолитных обделок в готовой выработке шириной 4,8 и высотой 5,5 м. Для фиксации автошасси размах выносных опор достигает 11 м (рис. П.13.6).
Автобетононасос оборудуется стрелой типа 1 (BTS) и стрелой типа 2 (WPSO).
Основные характеристики чцтойс-тпнонасоса, оборудованного стрелой типа 1
Эффективная производительность (м3/ч) при давлении до 4 МПа 50
Емкость загрузочного бункера, м3 0,5
Максимальная крупность, мм:
гравия 63
щебня 50
Основные характеристики автобетононасоса, оборудованного стрелой типа 2
Производительность бетононасоса (м3/ч)
при давлении 0,6-0,7 МПа 30
Максимальная крупность заполнителя (мм)
при диаметре трубопроводов 77 мм до 15
Маневренность рабочего органа:
продольный ход телескопа брандспойта - 2,0 м;
продольная ориентация брандспойта 90°;
поперечное вращение стрелы - до 300.
При наращивании трубопроводов: производительность - до 46 м3/ч, дальность подачи бетонной смеси по горизонтали - до 400 м, по вертикали - до 80 м при максимальном давлении 31,5 МПа.
Вариант автобетононасоса «Роборама» в зимнем исполнении представлен на рис. П.13.7.
Рис. П.13.6. Автобетононасос «Роборама»:
1 - автошасси; 2 - выносные опоры; 3 - загрузочный бак; 4 - бетоновод; 5 - стрела; 6 - насосный агрегат
Рис. П.13.7. Автобетононасос «Роборама» в зимнем исполнении. Общий вид
10. Автобетононасос CБ-126A (СБ-1706-1)
Автобетононасос СБ-126А в соответствии с ТУ 22-4876-80 Минстройдормаша предназначен для подачи бетонной смеси в горизонтальном и вертикальном направлении к месту укладки с помощью стрелы инвентарного бетоновода. Насос монтируется на автошасси КамАЗ 53213. Распределительная стрела 5 монтируется на раме 9 шасси 1 через поворотное устройство. Автобетононасос оборудуется приемной воронкой 7, баком для воды 6, выносными опорами 3, которые управляются гидроцилиндрами 8, и гидробаком 4. Работа насоса и перемещение стрелы обеспечиваются двигателем автомобиля через коробку отбора мощности 2.
Техническая характеристика
Производительность, м3/ч 56
Дальность подачи бетоноводом, м:
по горизонтали 180-360
по вертикали 50-80
Рабочее давление, МПа до 6
Диаметр бетоновода, мм 125
Бетонная смесь:
осадка конуса, см 6-12
наибольшая крупность заполнителя, мм 40
Объем загрузочной воронки, м3 0,6
Высота загрузки, м 1,4
Дальность подачи стрелой, м:
по горизонтали 26
по вертикали 21
Поворот стрелы, град.:
в вертикальной плоскости 90
в горизонтальной плоскости 355
Мощность двигателя, кВт 100
Распределение масс, т:
на переднюю ось 4,3
на задний мост 12,7
Скорость движения, км/ч 60
Габаритные размеры, м:
длина 10
ширина 2,5
высота 3,8
Масса, т:
технологического оборудования 9,8
конструктивная общая 16,8
Модификация СБ-126Б-1 автобетононасоса оборудована герметичной кабиной для управления технологическим оборудованием и системой обогрева оборудования для работы при температурах до -30°С.
11. Автобетононасос БН-80-20
Бетононасос предназначен для подачи бетонной смеси к месту укладки с помощью стрелы или бетоновода в горизонтальном и вертикальном направлениях при возведении сооружений из монолитного бетона и железобетона (рис. П.13.8).
Оборудование собственно бетононасоса 7, стрела 3, бетоновод 4 с патрубком для заливки пусковой смеси 5 и гидравлическая станция 9 смонтированы на несущей раме 8 и установлены на автомобиле КрАЗ-2571. Работа насоса обеспечивается двигателем автомобиля с регулятором частоты вращения 11 через коробку отбора мощности 2. Устойчивость агрегату при установке стрелы и заданное положение придают задние 6 и передние 10 выносные опоры.
Рис. П.13.8. Автобетононасос БН-80-20:
1 - автомобиль КрАЗ-237; 2 - коробка отбора мощности; 3 – стрела; 4 - бетоновод; 5 - патрубок для заливки пусковой смеси; 6 - задняя выносная опора; 7 - пульт управления бетононасосом; 8 - несущая рама; 9 - гидравлическая насосная станция; 10 – передняя выносная опора; 11 - регулятор частоты вращения двигателя
Техническая характеристика
Производительность, м3/ч 65
Данность подачи, м:
стрелой по горизонтали 17
по вертикали 20
бетоноводом по горизонтали 500
по вертикали 180
Емкость приемного бункера, м3 0,4
Высота загрузки, м 1,4
Диаметр бетоновода, мм 125
Мощность привода насоса, кВт 180
Габаритные размеры, м:
длина 11,1
ширина 2,6
высота 3,8
Масса, г 22,6
1. Функция неразрушимости обделки обеспечивается неравенством
S=R-q³0, (1)
где R - прочность бетона, МПа, q - максимальные действующие напряжения в обделке, МПа.
В процессе твердения бетона несущая способность и напряженное состояние обделки являются функцией модуля упругости бетона:
R=f1(E) и q=f2(E). (2)
Для построения зависимостей (2) обделку рассчитывают при различных модулях упругости Е в интервале 0,5Х104-2Х104 МПа. Напряжения рассчитывают по нагрузкам, принимаемым по СНиП II-40-80. По результатам расчета при каждом значении модуля упругости определяют максимальные величины напряжении и по ним строится кривая q=f2(e) (рис. П.14.1), в этих же координатах строится график R=f1(E).
2. Значения прочности бетона R принимают с коэффициентом запаса K, определяемым проектом.
Рис. П.14.1. График определения минимально допустимой прочности бетона при распалубке:
1-R=f1(E); 2-q=f2(E)
3. Параллельно оси ординат (R, q) строится шкала времени T по опытным данным, полученным при определении R (см. п. 1), что дает возможность определить минимально допустимые сроки выдержки бетона в опалубке.
4. Ниже приводится порядок определения времени распалубки с помощью метода расчета, основанного на теории механики сплошной среды; принимается, что нарастание горного давления на обделку происходит вследствие ползучести окружающего выработку грунта.
При этом в системе «крепь-грунт» происходит ряд физико-механических процессов, от взаимодействия которых зависит время распалубки бетона. Это процесс набора прочности бетона, характеризуемый изменением предельного напряжения сжатия Rсж по времени и изменением во времени модуля деформации бетона Еб. Происходят также процессы ползучести бетона и ползучести окружающего выработку грунта, последний из которых является нагружающим фактором. Время распалубки определяется из условия того, что действующие в распалубочном бетоне напряжения qд, растущие во времени, становятся меньше или равными предельным
При этом напряжение qд зависит как от изменения модуля деформации бетона Eб, так и от ползучести грунта, окружающего выработку. Предельное напряжение Rсж связано исключительно с набором бетоном прочности (рис. П.14.2).
Для круглого поперечного сечения выработки в условиях неравно-компонентного бытового напряженного состояния грунта максимальные напряжения сжатия в обделке можно выразить следующим образом:
, (4)
где g - удельный вес грунта; H - глубина заложения выработки; r - радиус выработки; h - толщина обделки; L - относительная жесткость системы «крепь-грунт», ; v - коэффициент Пуассона грунта; Е0 - мгновенный модуль деформации грунта; Е - модуль деформации грунта, l - коэффициент бокового давления .
Рис. П. 14.2. Зависимость предельного сжатия Rсж от t
Ползучесть грунта описывается с помощью метода переменных модулей, согласно которому
, (5)
где F(t) - функция ползучести, которую предлагается принять в виде Абелева ядра
.
Здесь a и d - параметры ползучести.
Предполагается далее, что мгновенные упругие деформации массива грунта произошли до момента сооружения обделки, и она нагружается лишь вследствие ползучести грунта. При этом ползучесть бетона не учитывается, что идет в запас прочности.
Набор прочности бетона, т.е. возрастание величины Rсж во времени описывается для различных марок бетона и температур зависимостями, которые аналитически можно приближенно представить в виде уравнения
Rсж(t)=Rсж×j(t), (6)
Где , Rсж - предельное напряжение сжатия в бетона в возрасте 28 сут.
Возрастание модуля деформации бетона, связанное с набором прочности, описывается эмпирической зависимостью
, (7)
при этом Е0(t) выражается в МПа. Таким образом, путем решения уравнения (3) с учетом зависимостей (4), (5), (6) и (7) относительно времени, находится необходимое время распалубки бетона tр.
При этом надежность системы может быть обеспечена принятием в расчете коэффициентов, которые при условии прочности типа (3) могут быть сведены к коэффициенту запаса K0. В этом случае уравнение (3) можно записать в виде
. (8)
Пример расчета.
Параметры ползучести грунта (алевролита):
a=0,71; d=0,008.
Модуль деформации грунта E=2X103 МПа.
Коэффициент Пуассона v=0,5.
Выработка заложена на глубине H=15 м, удельный вес грунта g=2,5 тс/м3, радиус выработки r=2,95 м, толщина обделки 0,35 м. В выражении функции набора прочности уравнения (6) показатель степени n=0,7. Расчетная прочность Rcж в бетоне в возрасте 28 сут. принята 30 МПа. Коэффициент однородности принимается Ко=3. Решение уравнения (3) на ЭВМ дает значение
tр=96667 с»27 час.
Пример 1
Исходные данные:
естественная температура пород от 0 до -5°С;
температура воздуха в выработке t1 перед укладкой бетона на поверхность с температурой 0°С;
то же и период твердения бетона t2= +5°С;
то же наружного воздуха tв= -20°С;
расчетная температура бетона t0 по условиям распалубки через 72 ч= +5°С;
продолжительность транспортирования бетонной смеси от завода к месту укладки t1=15 мин;
утепление опалубки отсутствует.
Требуется определить начальную температуру бетонной смеси и температуру свежеуложенного бетона. По табл. 6 настоящего ВСН при t=72 ч, t1=0, t2= +5°С находим: A=0,14; B=1,7. По формуле определяем
°
Температуру t0 определяем путем последовательных приближении (см. п. 7.10). Назначив в качестве первого приближения t0=30°, получаем
°C
Таким образом, начальная температура бетонной смеси должна быть t0=30°С, температура к концу транспортирования - не ниже 26, температура свежеуложенного бетона - не ниже 24°С.
Пример 2
Исходные данные те же, что и в примере 1, но t2=0. Требуется определить те же параметры, что и в примере 1. Ввиду того, что t2<tр, принимаем опалубку с утеплением. По. табл. 7 настоящего ВСН при t=72 ч и t1=t2=0 находим; А=0,35; В= -0,2. Определяем tукл (см. п. 7.7)
°C
Требуется tтр=16-17°С.
В качестве первого приближения назначаем t0=20°С, тогда
°C
что согласуется с требуемым tтр=17°С.
Таким образом, значения температуры бетонной смеси должны быть:
t0=20°С; tтр=17°С; tукл=15°С.
Пример 3
Исходные данные те же, что и в примере 1, но t1=t2= -2°C, т.е. температура воздуха, как и температура пород, до бетонирования и при твердении бетона отрицательна.
Требуется определить те же параметры, что и в примере 1.
Для неутепленной опалубки по табл. 6 с помощью интерполяции при t=72 ч находим: A=0,09; B= -2,5. Определяем:
°С.
Поскольку такая температура не может быть реализована, необходимо найти другие пути.
При применении утепленной опалубки по табл. 7 (с интерполяцией) находим: А=0,35; В= -1,2. В этом случае
°C; tтр=19-20°С
Первое приближение
t0=20°C; °C
Второе приближение
t0=22°C; °C
что удовлетворяет требуемому.
Таким образом, t0=22°C; tтр=20°С; tукл=17,7°С.
Пример 4
Исходные данные те же, что и в примере 3, но t2=15°С, т.е. осуществляется подогрев воздуха на участке твердения бетона или нагрев поверхности опалубки. Требуется определить те же параметры, что и в примере 1. По табл. 7 через 72 ч находим A=0,18; B=4,5. Тогда:
°C
Температуру t0 определяем путем последовательных приближений. Назначив в качестве первого приближения t0=15°С, получаем:
°C
или почти на 3°С больше требуемого.
Второе приближение
t0=14°C; °C
Таким образом, на выходе из бетонного завода температура бетонной смеси должна быть не ниже t0=14°C, к концу транспортирования tтр=12°С и в момент укладки tукл=10,6°С.
___________________________________________________________________
название
Номер источника обводненности |
Положение источника |
Дата обследования |
Начальный дебит, л/мин |
Дебит источника по периодам года, л/мин |
|||||||||
Забой (участок) |
пикет |
Расположение в сечении |
199_____г. |
199_____г. |
|||||||||
январь |
март |
июнь |
сентябрь |
январь |
март |
июнь |
сентябрь |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Примечания: 1. Номер источника обводненности указывается следующим образом: тоннель, источник № 1-ТИ-1; тоннель, источник № 2-ТИ-2; штольня, источник № 1-ШИ-1 и т.д.
2. Выбор времени измерения дебита источников должен определяться конкретными климатическими условиями объекта. Необходимо измерять дебит в наиболее характерные, по обводненности периоды года (таяние снегов, обильные дожди, сухая погода и т.п.).
Наименование метода |
Время испытания |
Порядок проведения испытаний |
Оценка результатов |
Примечание |
1. Методики оперативного определения активности цемента |
||||
1.1. Метод ЦНИИПС-2 |
24 ч |
Изготавливаются образцы-кубы (2Х2Х2 см) из цементного теста нормальной густоты - 12 шт. Режим твердения: 20 ч твердения в нормальных условиях при t=20° ±2°С, W=90-100%; 6 образцов подвергаются ТВО в течение 4 ч, а оставшиеся 6 образцов - нормальное твердение |
Испытывают 12 образцов через 24 ч, при этом R28=K×Rсутпроп где К - по графику о зависимости от
|
форма для изготовления образцов показана на рис. П.17.1, зависимость K=fh - на рис. П.17.2. расход цемента 200 г |
1.2. Метод НИИцемента |
6 ч |
Изготавливаются образцы-кубы 7Х7Х7 см - 3 шт. состава Ц:П=1:3, В/Ц=0,4. Режим твердения: термовлажностная обработка: 2 ч образцы в формах в выключенной камере +3 ч прогрев +1 ч остывание при t= +20°С ±2°С. |
Прочность на сжатие равноценна прочности в 3-х или 7-суточном возрастах (в зависимости от активности по ГОСТ 310.4-81) R28=K×Rуск, где Rуск - предел прочности при сжатии образцов, подвергшихся прогреву, кгс/см3; K -переходный коэффициент |
пропарочная камера должна иметь наружный обогрев |
1.3. Модификация метода НИИцемента |
4 ч 30 мин |
Изготавливают образцы - балочки 4Х4Х16 см из состава аналогично п. 1.2. Режим твердения: 2 ч ТВО, равномерный подъем температуры до кипения воды +2 ч изотермический прогрев при температуре кипения поды. Через 30 мин после ТО образцы распалубливают и испытывают |
То же |
То же |
1.4. Метод «Оргэнергостроя» |
9 ч |
Изготавливаются образцы-цилиндры Æ 11,3Х10,0 мм, прессуются при усилии до 50 КН, насыщаются водным раствором поташа, выдерживаются в сушильном шкафу при t=(50+5)°С в течение 4-8 ч в зависимости от группы цемента и испытываются |
Погрешность оценки активности без предварительной градуировки – 16%, с предварительной градуировкой - 12% |
Необходимо построение градуировочных зависимостей для различных групп цемента |
1.5. Метод «ВНИМФТРИ» |
8 ч |
Изготавливаются образцы-цилиндры и образцы-кубы 10Х10Х10 см; образцы-цилиндры помещают в контрактомер, образцы-кубы (из бетона) - контрольные. Загрузка образцов в контрактомер и камеру ТВО одновременно. Определение контракции - через 3 ч, прочности - через 8 часов |
Погрешность определения активности цемента через 4 ч - 15%, прочности бетона - через 8ч-12%. С предварительной градуировкой - 10%. Погрешность уменьшается в 1,5 раза при наличии данных о виде и группе цемента |
Комплект для ускоренной оценки |
1.6. Метод «Прогноз» |
10 мин |
Изготавливают пробы цементного теста нормальной густоты, помешают в диэлектрическую ячейку; при t=30°С - начальное значение, при t=70°С (разогрев электротоком) - конечное. По полученным значениям построение градуировочной зависимости «прочность-коэффициент прогнозирования» |
Оценка прочности по градуировочным зависимостям, построенным на основе измерения времени резистивного электропрогрева пробы цементного теста при t=30...70°С |
Выполняется прибором «Прогноз», возможно определять класс бетона по прочности на сжатие при любом режиме ТВО и возрасте. Прибор разработан ОНИЛ «Рапид» НИСИ |
2. Методы оперативного определения прочности бетона |
||||
2.1. Склерометрический (приборами механического действия) |
от 2 мин до 20 мин |
Приборы - склерометр Шмидта; ударный молот ХПС; ударный молоток с эталонным стержнем и т.д. |
Прочность определяется в поверхностном слое в зависимости от величины отскока специального бойка, диаметра отпечатка на бетоне и т.д. |
Необходима предварительная градуировка на контрольных образцах по ГОСТ 22690-88 |
2.2. Метод Кинга |
7 ч |
Изготавливают бетонные образцы-кубы 10Х10Х10 см; через 10 мин после введения воды затворения образцы в закрытых формах устанавливают в пропарочную камеру. Режим ТВО: 1 ч - подъем до температуры 90°С; 5 ч - выдерживание при t=90°С; 0,5 ч - охлаждение; 0,5 ч – в распалубленном состоянии |
Прочность бетона после ТВО соответствует прочности в 28-суточном возрасте |
|
2.3. Ультразвуковой импульсный метод ГОСТ 17624-87 |
10 мин |
Основан на скорости прохождения ультразвука через тело бетона. Непосредственно в конструкции - метод поверхностного прозвучивания или метод продольного профилирования. Прибор - «Бетон-22». Звуковые преобразователи и приемник должны быть установлены на одной прямой |
Прочность определяется по экспериментальным градуировочным зависимостям «скорость распространения УЗК – прочность бетона» или «время распространения УЗК на постоянной базе прозвучивания - прочность бетона». Зависимости строятся по испытаниям контрольных образцов 10Х10Х10 см, изготовленных в соответствии с ГОСТ 10180-78* |
При использовании цилиндрических контактных преобразователей необходимо выравнивать поверхность бетона в местах контакта и наносить на поверхность преобразователей смазку. Общий вид прибора представлен на рис. П.17.3 |
2.4. Метод «Прогноз» |
10 мин |
Рис. П.17.1. Форма для изготовления образцов-кубов 20Х20Х20 мм:
1 - форма из Ст. 3 ГОСТ 380-71; 2 - пластина (2 шт.) толщиной 5 мм из Ст. 3 ГОСТ 380-71
Рис. П.17.2. График для определения переходного коэффициента от результатов ускоренного анализа к результатам стандартных испытаний (метод ЦНИИС-2)
Рис. П.17.3. Портативный ультразвуковой прибор «Бетон»:
а - общий вид: 1 - числовой индикатор; 2, 3 - приспособления для поверхностного прозвучивания - контактные преобразователи. Габаритные размеры: 250Х210Х110 мм; масса прибора 2,5 кг, б) блок-схема: 1 - синхронизатор; 2 - генератор зондирующих импульсов; 3 – излучающий пьезопреобразователь; 4 - тело бетона; 5 - приемный преобразователь; 6 – усилитель; 7 - триггер ворот; 8 – генератор меток времени; 9 - временной селектор; 10 – счетчик; 11 - цифровой индикатор
Предназначено для учета нарастающим итогом массы цемента или других компонентов бетонных смесей при дискретном дозировании.
Устройства устанавливаются на дозировочно-смесительных узлах и установках периодического действия, оснащенных дозаторами типа АВДЦ-1200М и АД-600-2БЦ (ДБЦ-600) или аналогичными, снабженными циферблатными указателями типа УЦК-ЦЦД.
Принцип работы устройства УРЦ основан на измерении разности между показаниями циферблатного указателя весов дозатора в моменты, соответствующие началу загрузки дозатора материалом и началу выгрузки материала из бункера-дозатора в бетоносмеситель.
Для первичного преобразования используется стандартный сельсин-датчик, входящий в комплект циферблатного указателя весов дозатора.
Электрический сигнал сельсина-датчика при начальном и конечном положениях стрелки циферблатного указателя преобразуется и цифровые коды.
Разность этих значений в каждом цикле дозирования суммируется в накопительном цифровом счетчике, показания которого сохраняются при остановке процесса дозирования и отключения сетевого питания.
Конструктивно устройство «УРЦ» выполнено в общем корпусе шкафного типа, где размещены его основные блоки: индикатор расхода цемента, блок сельсинов-преобразователей, блок управления.
Техническая характеристика
Измеряемая величина масса цемента (или другого материала), дозированного весовым дозатором дискретного действия
Диапазон измерения, кг 150-1000
Входной сигнал угол поворота сельсина в пределах 0-353°
Основная погрешность ±(0,01М+1) кг, где М - значение массы дозы или суммы доз
Срок службы, лет 8
Масса, кг в зависимости от модификации 21-26
Габаритные размеры, мм 610Х333Х335
Соответствует уровню мировых стандартов.
Регламентированные ГОСТ 10060-86 методы определения морозостойкости бетонов длительны и требуют больших затрат. Например, на получение данных для бетонов с морозостойкостью F 300 требуется затратить более трех месяцев при трехсменной работе испытательной лаборатории.
При таких методах определения морозостойкости в случае получения неудовлетворительных результатов невозможно оперативно вносить коррективы в состав бетонных смесей.
Для прогнозирования морозостойкости бетонов по критерию морозостойкости (Кмрз) предложен ускоренный метод, заключающийся в следующем.
Высокой морозостойкостью будут обладать те бетоны, у которых объем резервных пор Vр.п в единице объема больше возможного приращения объема DV жидкой фазы, заполняющей поровое пространство в единице его объема при полном переходе всей жидкости в твердое агрегатное состояние. Это условие высокой морозостойкости бетона можно записать так:
Vр.п ³ DV, (1)
или
Пу.з ³ 0,09Пи, (2)
где Пу.з - резервная (условно-замкнутая) пористость бетона, образующаяся вследствие контракции; Пи - интегральная (открытая) пористость бетона.
Неравенство (2) получено из выражения (1), поскольку очевидно, что
,
где rв - плотность воды, кг/м3; rл=0,917 - плотность льда, кг/м3; 1000 - объем 1 м3 бетона, л.
Vр.п=1000×(По-Пи)=1000×Пу.з
где По - общая пористость бетона.
Из неравенства (2) получается следующее выражение для критерия морозостойкости бетонов высокой морозостойкости:
Таким образом, чем больше значения Кмрз бетона, тем больше его морозостойкость.
По значению критерия морозостойкости Кмрз=Пу.з/0,09×Пи можно дать сравнительную оценку морозостойкости бетона на стадии проектирования (выбора) его состава (1) и к моменту начала его замораживания.
Рис. П.19. График зависимости морозостойкости от ее критерия Кмрз
В случае прогнозирования морозостойкости на стадии проектирования его состава или при известных расходе цемента Ц и степени его гидратации a величину условно-замкнутой пористости можно определить из выражения
Пу.з=0,0041×a×Ц, (4)
где 0,0041 - коэффициент для бетонов без добавок, кг-1.
Как следует из уравнения (3), для вычисления значения критерия морозостойкости изготовленного бетона необходимо знать общую и интегральную пористости данного бетона.
Общая пористость бетона может быть экспериментально определена по известной средней плотности сухого бетона и его истинной плотности. Интегральную пористость можно вычислить по формуле
, (5)
где W - водопоглощение бетона по массе, %; rо(б) - средняя плотность сухого бетона, кг/м3.
Условно замкнутую пористость определяют из уравнения
При прогнозировании морозостойкости затвердевшего бетона с воздухововлекающими добавками критерии морозостойкости также вычисляют по формуле (3), так как степень возможного обводнения воздушных пор соответственно определяют через водопоглощение бетона.
Между расчетным критерием морозостойкости и фактической морозостойкостью бетона существует самая тесная связь.
При этом коэффициенты корреляции между этими величинами, полученные на основе обработки экспериментальных данных, находятся в пределах 0,96¸0,91, что указывает на строгую связь между этими параметрами.
На рис. П.19 представлен график зависимости морозостойкости бетонов от критерия, определенного по формуле (3).
При вычислении критерия морозостойкости для определения Пу.з использовано выражение (4) по известному расходу цемента Ц и его степени гидратации, принятой равной a=0,55.
Интегральную пористость Пи определяли из выражения (6) по известной общей пористости По и полученной условно-замкнутой Пу.з пористости.
Как видно из рис. П.19, результаты, полученные различными исследователями и обработанные по критерию морозостойкости Кмрз, подтверждают справедливость предложенного критерия.
Предложенный критерий морозостойкости может быть использован для сравнительной оценки морозостойкости бетона на стадии его проектирования и для оценки морозостойкости затвердевшего бетона, не прибегая к длительным испытаниям с многократным замораживанием и оттаиванием.
Дата бетонирования |
Место укладки бетона |
Тип смазки, нанесенный на лицевую поверхность опалубки |
№ чертежа, марка бетона по проекту |
Состав (№ накладных) и марка бетона |
Подвижность, см (осадка конуса) |
Время начала затворения бетонной смеси |
Время укладки бетонной смеси |
Ширина бетонируемого участка, см |
Температура при укладке |
Объем уложенного бетона, м3 |
Дата и время распалубливания |
Продолжительность выстойки бетона в опалубке, ч |
Наличие дефектов бетонирования и меры, принятые по их исправлению |
Данные по уходу за бетоном обделки |
Результаты испытания контрольных кубов |
Росписи начальника смены и начальника участка |
|
|||
От ПК |
До ПК |
Воздуха |
Бетонной смеси |
|||||||||||||||||
Прочность на момент распалубливания, МПа |
Прочность в 28-суточном возрасте, МПа |
|
||||||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
СОДЕРЖАНИЕ
Расположен в: |
---|
Источник информации: https://internet-law.ru/stroyka/text/5649
На эту страницу сайта можно сделать ссылку:
На правах рекламы:
© Антон Серго, 1998-2024.
|
Разработка сайта |
|