Полное меню
Примечание: В числителе - для движущегося колеса, в знаменателе - для неподвижного. П.1.2. Данные о нагрузках, передаваемых на дорожное покрытие выпускаемыми серийно автотранспортными средствами, следует принимать по специальным справочникам. П.1.3. Значение суммарного коэффициента приведения определяют по формуле: где n - число осей у данного транспортного средства, для приведения которого к расчетной нагрузке определяется коэффициент ; Sn - коэффициент приведения номинальной динамической нагрузки от колеса каждой из n осей транспортного средства к расчетной динамической нагрузке. П.1.4. Коэффициенты приведения нагрузок Sn определяют по формуле: где Qдn - номинальная динамическая нагрузка от колеса на покрытие; Qрасч - расчетная динамическая нагрузка от колеса на покрытие; Р - показатель степени, принимаемый равным: 4,4 - для капитальных дорожных одежд; 3,0 - для облегченных дорожных одежд; 2,0 - для переходных дорожных одежд. П.1.5. Номинальная динамическая нагрузка Qдп определяется по паспортным данным на транспортное средство с учетом распределения статических нагрузок на каждую ось: Qдп = Кдин × Qп, (П.1.3) где Кдин - динамический коэффициент, принимаемый равным 1,3; Qn - номинальная статическая нагрузка на колесо данной оси. При определении расчетного значения номинальной статической нагрузки для многоосных автомобилей фактическую номинальную нагрузку на колесо, определяемую по паспортным данным, следует умножать на коэффициент Кс, вычисляемый по формуле: Кс = а - в, (П.1.4) где Бm - расстояние в метрах между крайними осями автотранспортного средства; а, в, с - параметры, определяемые в зависимости от капитальности дорожной одежды и числа осей тележки по таблице П.1.2. Таблица П.1.2
Примечание. В числителе - для капитальных и облегченных типов дорожных одежд, в знаменателе - для переходных. П.1.6. Суммарный коэффициент приведения определяют в следующей последовательности: - назначают расчетную нагрузку и определяют ее параметры: Qрасч, Р и D: - для каждой марки автомобилей в составе перспективного движения по паспортным данным устанавливают величину номинальной статической нагрузки на колесо для всех осей транспортного средства Qn; - умножив полученные значения Qn и расчетную нагрузку Qрасч на динамический коэффициент, находят величины номинальных динамических нагрузок Qдп от колеса для каждой оси и величину расчетной динамической нагрузки Qдрасч; - по формуле (П.1.2) вычисляют коэффициент приведения номинальной нагрузки от колеса каждой из осей Sп к расчетной; - по формуле (П.1.1) вычисляют суммарный коэффициент приведения нагрузки от рассматриваемого типа автомобиля к расчетной нагрузке. П.1.7. Допускается приближенно принимать суммарный коэффициент приведения Smсум по данным таблицы П.1.3. Таблица П.1.3
ПРИЛОЖЕНИЕ 2
|
Дорожно-климатические подзоны |
Схема увлажнения рабочего слоя земляного полотна |
Среднее значение влажности таб грунта, доли от WТ |
||||
супесь легкая |
песок пылеватый |
суглинок легкий |
супесь пылеватая и суглинок пылеватый |
|||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
I |
I1 |
1 |
0,53 |
0,57 |
0,62 |
0,65 |
2 |
0,55 |
0,59 |
0,65 |
0,67 |
||
3 |
0,57 |
0,62 |
0,67 |
0,70 |
||
I2 |
1 |
0,57 |
0,57 |
0,62 |
0,65 |
|
2 |
0,59 |
0,62 |
0,67 |
0,70 |
||
3 |
0,62 |
0,65 |
0,70 |
0,75 |
||
I3 |
1 |
0,60 |
0,62 |
0,65 |
0,70 |
|
2 |
0,62 |
0,65 |
0,70 |
0,75 |
||
3 |
0,65 |
0,70 |
0,75 |
0,80 |
||
II |
II1 |
1 |
0,60 |
0,62 |
0,65 |
0,70 |
2 |
0,63 |
0,65 |
0,68 |
0,73 |
||
3 |
0,65 |
0,67 |
0,70 |
0,75 |
||
II2 |
1 |
0,57 |
0,59 |
0,62 |
0,67 |
|
2 |
0,60 |
0,62 |
0,65 |
0,70 |
||
3 |
0,62 |
0,64 |
0,67 |
0,72 |
||
II3 |
1 |
0,63 |
0,65 |
0,68 |
0,73 |
|
2 |
0,66 |
0,68 |
0,71 |
0,76 |
||
3 |
0,68 |
0,70 |
0,73 |
0,78 |
||
II4 |
1 |
0,60 |
0,62 |
0,65 |
0,70 |
|
2 |
0,63 |
0,65 |
0,68 |
0,73 |
||
3 |
0,65 |
0,67 |
0,70 |
0,75 |
||
II5 |
1 |
0,65 |
0,67 |
0,70 |
0,75 |
|
2 |
0,68 |
0,70 |
0,73 |
0,78 |
||
3 |
0,70 |
0,72 |
0,75 |
0,80 |
||
II6 |
1 |
0,62 |
0,64 |
0,67 |
0,72 |
|
2 |
0,65 |
0,67 |
0,70 |
0,75 |
||
3 |
0,67 |
0,69 |
0,72 |
0,77 |
||
III |
III1 |
1 |
0,55 |
0,57 |
0,60 |
0,63 |
2-3 |
0,59 |
0,61 |
0,63 |
0,67 |
||
III2 |
1 |
0,58 |
0,60 |
0,63 |
0,66 |
|
2-3 |
0,62 |
0,64 |
0,66 |
0,70 |
||
III3 |
1 |
0,55 |
0,57 |
0,60 |
0,63 |
|
2-3 |
0,59 |
0,61 |
0,63 |
0,67 |
||
IV |
1 |
|
0,53 |
0,55 |
0,57 |
0,60 |
2-3 |
|
0,57 |
0,58 |
0,60 |
0,64 |
|
V |
1 |
|
0,52 |
0,53 |
0,54 |
0,57 |
2-3 |
|
0,55 |
0,56 |
0,57 |
0,60 |
Примечание. Табличными значениями таб можно пользоваться только при обеспечении возвышения земляного полотна в соответствии со СНиП. На участках, где возвышение не обеспечивается (например, в нулевых местах и в выемках с близким залеганием грунтовых вод), величина таб назначается индивидуально по данным прогнозов, но она должна быть не менее чем на 0,03 выше табличных значений.
Таблица П.2.2
Тип местности по рельефу |
Поправка D1 |
|
1. |
Равнинные районы |
0,00 |
2. |
Предгорные районы (до 1000 м в.у.м.) |
0,03 |
3. |
Горные районы (более 1000 м в.у.м.) |
0,05 |
Таблица П.2.3
Конструктивная особенность |
Поправка D2в дорожно-климатических зонах |
|||||||
II |
III |
IV |
V |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
|||
1. |
Наличие основания дорожной одежды, включая слои на границе раздела с земляным полотном, из укрепленных материалов и грунтов: |
|
|
|
|
|||
- крупнообломочного грунта и песка |
0,04 |
0,04 |
0,03 |
0,03 |
||||
- супеси |
0,05 |
0,05 |
0,05 |
0,04 |
||||
- пылеватых песков и супесей, суглинка, зологрунта |
0,08 |
0,08 |
0,06 |
0,05 |
||||
2. |
Укрепление обочин (не менее 2/3 их ширины): |
|
|
|
|
|||
- асфальтобетоном |
0,05 |
0,04 |
0,03 |
0,02 |
||||
- щебнем (гравием) |
0,02 |
0,02 |
0,02 |
0,02 |
||||
3. |
Дренаж с продольными трубчатыми дренами |
0,05 |
0,03 |
- |
- |
|||
4. |
Устройство гидроизолирующих прослоек из полимерных материалов |
0,05 |
0,05 |
0,03 |
0,03 |
|||
5. |
Устройство теплоизолирующего слоя, предотвращающего промерзание |
Снижение расчетной влажности до величины полной влагоемкости при требуемом Купл. грунта |
||||||
6. |
Грунт в активной зоне земляного полотна в «обойме» |
Снижение расчетной влажности до оптимальной |
||||||
7. |
Грунт, уплотненный до Купл = 1,03-1,05 в слое 0,3-0,5 м от низа дорожной одежды, расположенном ниже границы промерзания |
- |
0,03-0,05 |
0,03-0,05 |
0,03-0,05 |
|||
Примечание. Поправки D2 при мероприятиях по п.п. 1 и 2 следует принимать только при 1-й схеме увлажнения рабочего слоя, а по п. 5 - при 2-й и 3-й схемах.
Б. Рекомендуемые нормативные значения механических характеристик грунтов и песчаных конструктивных слоев
Таблица П.2.4
Нормативные значения сдвиговых характеристик глинистых грунтов в зависимости от расчетного числа приложений расчетной нагрузки
Сцепление, МПа при суммарном числе приложений нагрузки (SNp) |
Угол внутреннего трения, град. при суммарном числе приложений нагрузки (SNp) |
|||||||||
1 |
103 |
104 |
105 |
106 |
1 |
103 |
104 |
105 |
106 |
|
Суглинки и глины |
||||||||||
0,60 |
0,030 |
0,030 |
0,016 |
0,014 |
0,012 |
24 |
20 |
14,5 |
11 |
9 |
0,65 |
0,024 |
0,019 |
0,013 |
0,011 |
0,009 |
21 |
15 |
11 |
8 |
7 |
0,70 |
0,019 |
0,013 |
0,009 |
0,007 |
0,006 |
18 |
11,5 |
8,5 |
6,5 |
5,5 |
0,75 |
0,015 |
0,009 |
0,006 |
0,005 |
0,004 |
15 |
10 |
7,5 |
5 |
4 |
0,80 |
0,011 |
0,007 |
0,005 |
0,003 |
0,002 |
13 |
8 |
5 |
3 |
2,5 |
0,90 |
0,008 |
0,004 |
0,004 |
0,002 |
0,001 |
11,5 |
6,5 |
3,5 |
2,2 |
2 |
Супеси |
||||||||||
0,6 |
0,014 |
0,012 |
0,008 |
0,006 |
0,005 |
36 |
24 |
18 |
14 |
12 |
0,65 |
0,013 |
0,010 |
0,008 |
0,006 |
0,004 |
36 |
23,5 |
17 |
14 |
12 |
0,70 |
0,012 |
0,009 |
0,006 |
0,005 |
0,004 |
35 |
23,5 |
17 |
14 |
12 |
0,75 |
0,011 |
0,008 |
0,005 |
0,004 |
0,003 |
35 |
23 |
17 |
14 |
12 |
0,80 |
0,010 |
0,007 |
0,005 |
0,004 |
0,003 |
34 |
23 |
17 |
14 |
12 |
0,85 |
0,009 |
0,007 |
0,004 |
0,003 |
0,003 |
34 |
22 |
15 |
12 |
10 |
0,90 |
0,008 |
0,004 |
0,003 |
0,003 |
0,003 |
33 |
21 |
12,5 |
10 |
8 |
Примечание. Значение сдвиговых характеристик при SNp = 1 используются при расчете на статическое действие нагрузки. При SNp > 10 расчетные значения j и с следует принимать по столбцу «106».
Таблица П.2.5
Нормативные значения модулей упругости грунтов
Модуль упругости, при относительной влажности W/Wm, МПа |
||||||||||
0,5 |
0,55 |
0,60 |
0,65 |
0,70 |
0,75 |
0,80 |
0,85 |
0,90 |
0,95 |
|
Пески: |
|
|||||||||
· крупные |
130 |
|||||||||
· средней крупности |
120 |
|||||||||
· мелкие |
100 |
|||||||||
· однородные |
75 |
|||||||||
· пылеватые |
96 |
90 |
84 |
78 |
72 |
60 |
60 |
54 |
48 |
43 |
Супеси: |
|
|
|
|
|
|
|
|
|
|
· легкая |
70 |
60 |
56 |
53 |
49 |
45 |
43 |
42 |
41 |
40 |
· пылеватая, тяжелая пылеватая |
108 |
90 |
72 |
54 |
46 |
38 |
32 |
27 |
26 |
25 |
· легкая крупная |
65 |
|||||||||
Суглинки: |
|
|
|
|
|
|
|
|
|
|
· легкий, тяжелый |
108 |
90 |
72 |
50 |
41 |
34 |
29 |
25 |
24 |
23 |
· легкий пылеватый, тяжелый пылеватый |
108 |
90 |
72 |
54 |
46 |
38 |
32 |
27 |
26 |
25 |
Глины |
108 |
90 |
72 |
50 |
41 |
34 |
29 |
25 |
24 |
23 |
Примечание. Классификация песков дана по ГОСТ 25100-95. Однородные выделяются по указаниям СНиП «Автомобильные дороги».
Таблица П.2.6
Расчетные значения угла внутреннего трения и сцепления песчаных грунтов и песков конструктивных слоев в зависимости от расчетного числа приложения расчетной нагрузки (SNp)
Тип грунта |
Сцепление, МПа и угол внутреннего трения, град при суммарном числе приложений нагрузки (SNp) |
||||||
1 |
103 |
104 |
105 |
106 |
|||
1. |
Песок крупный с содержанием пылевато-глинистой фракции: |
0 % |
35 0,004 |
33 0,003 |
32 0,003 |
31 0,003 |
29 0,003 |
5 % |
34 0,005 |
31 0,004 |
36 0,004 |
29 0,003 |
28 0,003 |
||
2 |
Песок средней крупности с содержанием пылевато-глинистой фракции: |
0 % |
32 0,004 |
30 0,004 |
30 0,003 |
28 0,003 |
22 0,002 |
5 % |
33 0,005 |
30 0,004 |
29 0,003 |
28 0,003 |
26 0,002 |
||
3 |
Песок мелкий с содержанием пылевато-глинистой фракции: |
0 % |
11 0,003 |
28 0,003 |
22 0,002 |
26 0,002 |
25 0,002 |
5 % |
31 0,005 |
22 0,004 |
26 0,004 |
21 0,004 |
24 0,003 |
||
8 % |
11 0,006 |
22 0,005 |
26 0,004 |
25 0,003 |
23 0,002 |
Примечания: 1. Значения характеристик даны для условий полного заполнения пор водой.
2. В числителе - угол внутреннего трения в градусах, в знаменателе - сцепление в МПа.
3. При SNp > А 106 расчетные значения j и с следует принимать по столбцу «106».
В. Дорожно-климатические зоны и подзоны
Дорожно-климатическая зона и подзона |
Примерные географические границы |
1 |
2 |
I |
Севернее линии, соединяющей: Нивский - Сосновку - Новый Бор - Щельябож - Сыню - Суеватпуль - Белоярский - Ларьяк - Усть-Озерное - Ярцево - Канск - Выезжий Лог -Усть - Золотую - Сарыч - Сеп - Новоселово - Иню - Артыбаш - государственную границу - Симоново - Биробиджан - Болонь - Многовершиный. Включает географические зоны тундры, лесотундры и северо-восточную часть лесной зоны с распространением вечномерзлых грунтов |
I1 |
Расположена севернее линии: Нарьян-Мар - Салехард - Курейка - Трубка Удачная - Верхоянск - Дружина - Горный Мыс - Марково |
I2 |
Расположена восточнее линии: устье р. Нижней Тунгуски - Ербогачен, Ленск - Бодайбо - Богдарин и севернее линии: Могоча - Сковородино - Зая - Охотск - Палатка - Слаутсткое. Ограничена с севера I1 подзоной |
II |
От границы I зоны до линии, соединяющей: Львов - Житомир - Тулу - Н. Новгород - Ижевск - Томск - Канск. На Дальнем Востоке от границы I зоны до государственной границы. Включает географическую зону лесов с избыточным увлажнением грунтов |
II1 |
С севера и востока ограничена I зоной, с запада - подзоной II3, с юга - линией Рославль - Клин - Рыбинск - Березники - Ивдель |
II2 |
Ограничена с севера подзоной II1, с запада - подзоной II4, с юга - III зоной, с востока и южной границей I зоны |
II3 |
С севера ограничена государственной границей, с запада -границей с подзоной II5, с юга - линией Рославль - Клин -Рыбинск, с востока - линией Псков - Смоленск - Орел |
II4 |
Ограничена с севера подзоной Из, с запада - подзоной II6, с юга - границей с III зоной, с востока - линией Смоленск - Орел - Воронеж |
II5 |
С севера и запада ограничена государственной границей, с востока - линией Минск - Бобруйск - Гомель, с юга - линией Барановичи - Рославль - Клин - Рыбинск |
II6 |
С севера ограничена подзоной II5, с запада - государственной границей, с юга - границей с III зоной, с востока - линией Минск - Бобруйск - Гомель |
III |
От южной границы II зоны до линии, соединяющей: Кишинев - Кировоград - Белгород - Самару - Магнитогорск - Омск - Бийск - Туран. Включает лесостепную географическую зону со значительным увлажнением грунтов в отдельные годы |
III1 |
Ограничена с севера зоной II, с запада - подзоной III2, с юга - IV зоной, с востока - I зоной |
III2 |
Ограничена с севера зоной II, с запада - подзоной III3, с юга - зоной IV, с востока - линией Смоленск - Орел - Воронеж |
III3 |
Ограничена с севера зоной II, с запада - государственной границей, с юга - зоной IV, с востока - линией Бобруйск - Гомель - Харьков |
IV |
Расположена от границы III зоны до линии, соединяющей: Джульфу - Степанакерт - Кизляр - Волгоград и далее проходит южнее на 200 км линии, соединяющей: Уральск - Актюбинск - Караганду. Включает географическую степную зону с недостаточным увлажнением грунтов |
V |
Расположена к юго-западу и югу от границы IV зоны и включает пустынную и пустынно-степную географические зоны с засушливым климатом и распространением засоленных грунтов |
А. Слои из асфальтобетона
Таблица П.3.1
Характеристики асфальтобетонов при расчете на растяжение при изгибе под кратковременными нагрузками
Расчетные значения модуля упругости Е, МПа |
m |
a |
Нормативные значения сопротивление растяжению при изгибе Ro, МПа |
|
Высокоплотный на БНД марки: |
|
|
|
|
40/60 |
8600 |
6,0 |
5,0/5,6* |
10,00 |
60/90 |
6000 |
5,5 |
5,2/5,9 |
9,80 |
90/130 |
4600 |
5,0 |
5,4/6,3 |
9,50 |
130/200 |
3500 |
4,5 |
5,8/6,8 |
9,30 |
200/300 |
2500 |
4,3 |
5,9/7,1 |
9,00 |
Плотный на БНД марки: |
|
|
|
|
40/60 |
6000 |
6,0 |
5,0/5,6 |
10,00 |
60/90 |
4500 |
5,5 |
5,2/5,9 |
9,80 |
90/130 |
3600 |
5,0 |
5,4/6,3 |
9,50 |
130/200 |
2600 |
4,5 |
5,8/6,8 |
9,30 |
200/300 |
2000 |
4,3 |
5,9/7,1 |
9,00 |
Пористый на БНД марки: |
|
|
|
|
40/60 |
3600 |
4,5 |
5,8/6,8 |
8,30 |
60/90 |
2800 |
4,3 |
5,9/7,1 |
8,00 |
90/130 |
2200 |
4,0 |
6,3/7,6 |
7,80 |
130/200 |
1800 |
3,75 |
6,6/8,2 |
7,60 |
200/300 |
1400 |
3,7 |
6,7/8,2 |
7,10 |
Высокопористый на БНД марки: |
|
|
|
|
40/60 |
3000 |
4,3 |
5,9/7,1 |
5,50/6,50** |
60/90 |
2100 |
4,0 |
6,3/7,6 |
5,65/6,20 |
90/130 |
1700 |
3,8 |
6,5/7,9 |
5,50/- |
Холодные асфальтобетоны: |
|
|
|
|
Бх |
2600 |
3,0 |
8,0/10,3 |
4,90 |
Вх |
2200 |
2,5 |
9,8/13,4 |
4,60 |
Гх |
1800 |
2,0 |
13,2/19,5 |
4,20 |
Дх |
1500 |
2,0 |
13,2/19,5 |
3,90 |
Примечание.
* - в числителе - для II дорожно-климатической зоны, в знаменателе - для III-V дорожно-климатических зон.
** - для песчаного асфальтобетона.
Таблица П.3.2
Нормативные значения кратковременного модуля упругости асфальтобетонов различных составов (при расчете конструкции по допускаемому упругому прогибу и по условию сдвигоустойчивости)
Марка битума |
Кратковременный модуль упругости Е, МПа, при температуре покрытия, °С |
|||||
+10 |
+20 |
+30 |
+40 |
+50 (60) |
||
Плотный асфальтобетон и высокоплотный асфальтобетон |
Вязкого БНД и БН: 40/60; 60/90; 90/130 130/200; 200/300 |
4400; 3200; 2400 1500; 1200 |
2600; 1800; 1200 800; 600 |
1550; 1100; 550 670; 500 |
850; 650; 550 460; 420 |
520; 460; 420 380; 360 |
Жидкого: БГ-70/130; СГ-130/200 СГ-70/130; МГ-70/130 |
1000; 1000 800; 800 |
420; 420 360; 360 |
400; 400 350; 350 |
350; 350 350; 350 |
350; 350 350; 350 |
|
Пористый и высокопористый асфальтобетон |
Вязкого БНД и БН: 40/60; 60/90; 90/130 130/200; 200/300 |
2800; 2000; 1400 1100; 950 |
1700; 1200; 800 600; 450 |
900; 700; 510 400; 350 |
540; 460; 380 340; 330 |
390; 360; 350 340; 330 |
Плотный дегтебетон |
- |
3800 |
1500 |
800 |
500 |
350 |
Пористый дегтебетон |
- |
2000 |
300 |
400 |
350 |
300 |
Асфальтобетоны холодные Бх |
- |
1300 |
- |
- |
- |
- |
Вх |
- |
1100 |
- |
- |
- |
- |
Гх |
- |
900 |
- |
- |
- |
- |
Дх |
- |
750 |
- |
- |
- |
- |
Примечания: 1. Модули упругости пористого и высокопористого асфальтобетона даны применительно к песчаным смесям. При температуре от 30 до 50 °С модули упругости для мелкозернистых смесей следует увеличить на 10 %, а для крупнозернистых смесей - на 20 %.
2. При расчете на упругий прогиб принимать при t° = +10°.
Таблица П.3.3
Расчетные значения модуля упругости асфальтобетона при расчете на длительную нагрузку
Вид асфальтобетона |
Тип смеси |
Расчетный модуль упругости Е при статическом действии нагрузки, МПа, при расчетной температуре, °С |
|||
+20 |
+30 |
+40 |
+50 |
||
Плотные смеси |
А |
480 |
420 |
360 |
300 |
Б |
400 |
350 |
300 |
250 |
|
В |
320 |
280 |
240 |
200 |
|
Г |
300 |
270 |
220 |
200 |
|
Д |
200 |
180 |
160 |
150 |
|
Пористые и высокопористые смеси |
Крупнозернистая |
360 |
320 |
280 |
250 |
Мелкозернистая |
290 |
250 |
220 |
200 |
|
Песчаная |
250 |
225 |
200 |
190 |
|
Асфальтобетоны холодные |
Бх |
180 |
- |
- |
- |
Вх |
170 |
- |
- |
- |
|
Гх |
160 |
- |
- |
- |
|
Дх |
150 |
- |
- |
- |
Примечание. Модуль упругости высокоплотного асфальтобетона принимать как для плотного асфальтобетона типа А.
Б. Конструктивные слои из органоминеральных смесей и грунтов, укрепленных органическим вяжущим
Таблица П.3.4
Конструктивные слои из щебеночно-гравийно-песчаных смесей и грунтов, обработанных органическими и комплексными вяжущими (органоминеральные смеси - ГОСТ 30491-97)
№ п.п. |
Материал слоя |
Нормативные значения модуля упругости, Е, МПа |
1 |
2 |
3 |
1 |
Щебеночно-гравийно-песчаные смеси и крупнообломочные грунты (оптимального/неоптимального состава) обработанные: |
|
- жидкими органическими вяжущими или вязкими, в т.ч. эмульгированными органическими вяжущими |
450/350 |
|
- жидкими органическими вяжущими совместно с минеральными или эмульгированными органическими вяжущими совместно с минеральными |
950/700 |
|
2 |
Пески гравелистые, крупные, средние/пески мелкие, супесь легкая и пылеватая, суглинки легкие обработанные: |
|
- жидкими органическими вяжущими или вязкими, в т.ч. эмульгированными органическими вяжущими |
430/280 |
|
- жидкими органическими вяжущими совместно с минеральными или эмульгированными органическими вяжущими совместно с минеральными |
700/600 |
Таблица П.3.5
Конструктивные слои из черного щебня
№ п/п |
Материал |
Нормативные значения модуля упругости, Е, МПа |
1 |
Черный щебень, уложенный по способу заклинки |
600-900 |
2 |
Слой из щебня, устроенного по способу пропитки вязким битумом и битумной эмульсией |
400-600 |
Примечание. Большие значения - для покрытий, меньшие - для оснований.
В. Конструктивные слои из щебеночно-гравийно-песчаных смесей и грунтов, обработанных неорганическими вяжущими материалами
Таблица П.3.6
Конструктивные слои из смесей щебеночно-гравийно-песчаных и грунтов, обработанных неорганическими вяжущими материалами, соответствующих ГОСТ 223558-94
Материал |
Нормативные значения модуля упругости, Е, МПа |
|
1 |
Щебеночно-гравийно-песчаные смеси, крупнообломочные грунты (оптимальные/неоптимальные), обработанные цементом: |
|
- соответствующие марке: 20 |
500/400 |
|
40 |
600/550 |
|
60 |
800/700 |
|
75 |
870/830 |
|
100 |
1000/950 |
|
2 |
То же, обработанные зольным или шлаковым вяжущим: |
|
- соответствующие марке: 20 |
450/350 |
|
40 |
550/500 |
|
60 |
750/650 |
|
75 |
870/780 |
|
100 |
950/910 |
|
3 |
Пески гравелистые, крупные, средние/пески мелкие и пылеватые, супесь легкая и тяжелая, суглинки легкие, обработанные цементом: |
|
- соответствующие марке: 20 |
400/250 |
|
40 |
550/400 |
|
60 |
700/550 |
|
75 |
870/750 |
|
100 |
950/870 |
|
4 |
То же, обработанные зольным или шлаковым вяжущим: |
|
соответствующие марке: 20 |
300/200 |
|
40 |
450/300 |
|
60 |
600/450 |
|
75 |
730/600 |
|
100 |
870/750 |
Таблица П.3.7
Конструктивные слои из активных материалов (шлаки, шламы, фосфогипс и др.)
№ п/п |
Материал |
Нормативные значения модуля упругости, Е, МПа |
1 |
Основание из подобранных оптимальных смесей из высокоактивных материалов с максимальной крупностью зерен до 40 мм, уплотненных при оптимальной влажности |
650-870 |
2 |
То же, из активных материалов |
480-700 |
3 |
Основание из рядовых неоптимальных смесей из высокоактивных материалов с максимальной крупностью 70 мм |
450-650 |
4 |
То же, из активных материалов |
370-480 |
Примечание. 1. К высокоактивным материалам относятся материалы, имеющие прочность при сжатии от 5 до 10 МПа в возрасте 90 сут.
2. К активным материалам - материалы, имеющие прочность при сжатии от 2,5 до 5 МПа в том же возрасте.
Г. Конструктивные слои из щебеночно-гравийно-песчаных материалов, необработанных вяжущими
Таблица П. 3.8
Конструктивные слои из смесей щебеночно-гравийно-песчаных, соответствующих ГОСТ 25607-94 и ГОСТ 3344-83
Нормативные значения модуля упругости, Е, МПа |
|
Щебеночные/гравийные смеси (С) для покрытий: |
|
- непрерывная гранулометрия (ГОСТ 25607) |
|
при максимальном размере зерен: С1 - 40 мм |
300/280 |
С2 - 20 мм |
290/265 |
Смеси для оснований |
|
- непрерывная гранулометрия: С3 - 80 мм |
280/240 |
С4 - 80 мм |
275/230 |
С5 - 40 мм |
260/220 |
С6 - 20 мм |
240/200 |
С7 - 20 мм |
260/180 |
Шлаковая щебеночно-песчаная смесь из неактивных и слабоактивных шлаков (ГОСТ 3344) |
|
C1 - 70 мм |
275 |
С2 - 70 мм |
260 |
С4 - 40 мм |
250 |
С6 - 20 мм |
210 |
Таблица П.3.9
Щебеночные основания, устраиваемые методом заклинки, соответствующие ГОСТ 25607-94
Нормативные значения модуля упругости, Е, МПа |
|
Щебень фракционированный 40-80 (80-120) мм с заклинкой: |
|
- фракционированным мелким щебнем |
450 350 |
- известняковой мелкой смесью или активным мелким шлаком |
400 300 |
- мелким высокоактивным шлаком |
450 400 |
- асфальтобетонной смесью |
500 450 |
- цементопесчаной смесью М75 при глубине пропитки 0,25-0,75 h слоя |
450-700 350-600 |
Примечание. Для слоя: в числителе - из легкоуплотняемого щебня; в знаменателе - из трудноуплотняемого щебня.
Д. Механические характеристики теплоизоляционных слоев
Таблица П.3.10
Материал |
Нормативные значения модуля упругости, Е, МПа |
Пенопласт |
13,0-33,5 |
Стиропорбетон |
500-800 |
Аглопоритовый щебень, обработанный вязким битумом |
400 |
Керамзитовый гравий, обработанный вязким битумом |
500 |
Гравий (щебень) с легкими заполнителями, обработанные вязким битумом |
500 |
Цементогрунт с перлитом |
130 |
То же, с полистиролом, состава: - гранулы полистирола 2-3 % - песок 97-98 % (% от массы) - цемент 7-6 % |
300 |
То же, с керамзитом, состава: - песок 75 % - керамзит 25 % - цемент 6 % |
300 |
Битумоцементогрунт с перлитом, состава: - перлитовый щебень 25-20 % - песок 75-80 % - цемент 4-6 % - битум 12-10 % (от массы песка, перлита и цемента) |
250-350 |
Цементогрунт с аглопоритом, состава: - супесь или песок 70-80 % - аглопорит 30-20 % - цемент 6 % |
250-350 |
Золошлаковые смеси, укрепленные цементом |
150 |
Грунт, укрепленный золой-уносом |
200 |
Цементогрунт, обработанный битумной эмульсией |
|
Таблица П.4.1
Рекомендуемые значения коэффициента вариации
Характеристика |
v |
|
1 |
Относительная влажность грунта рабочего слоя, сцепление грунта и песчаных слоев, угол внутреннего трения грунтов и песчаных слоев, прочность асфальтобетонных слоев на растяжение при изгибе |
0,10 |
Таблица П.4.2
Коэффициент нормированного отклонения
0,85 |
0,90 |
0,95 |
0,98 |
|
t |
1,06 |
1,32 |
1,71 |
2,19 |
Таблица П.5.1
Материал, грунт |
Плотность r, кг/м3 |
Коэффициент теплопроводности l, Вт/(мК) |
||
1 |
2 |
3 |
4 |
|
1 |
Асфальтобетон горячий плотный |
2400 |
1,40 |
|
|
То же, пористый |
2300 |
1,25 |
|
|
То же, высокопористый, в том числе битумопесчаная смесь (ТУ 218 РСФСР) |
2200-1900 |
1,10-1,00 |
|
2 |
Аглопоритовый щебень, обработанный вязкий битумом |
800 |
0,23 |
|
3 |
Керамзитовый гравий, обработанный вязким битумом |
1100 |
0,64 |
|
4 |
Гравий (щебень) с легкими заполнителями, обработанные вязким битумом |
2000 |
0,52 |
|
5 |
Супесь, укрепленная 10 %-ной эмульсией |
1700-1900 |
1,456 |
|
6 |
Цементобетон |
2400 |
1,74 |
|
7 |
Песок разномерный, укрепленный 10 % 6-10 % цемента |
2100 |
1,86 |
|
8 |
Песок мелкий, одномерный, укрепленный 10 % цемента |
2100 |
1,62 |
|
9 |
Цементогрунт с керамзитом: песок - 75 % (массы), керамзит - 25 %, цемент - 5 % |
1500-1600 |
|
|
10 |
Цементогрунт с гранулами полистирола: |
|
|
|
|
песок 97-98 %, гранулы полистирола |
|
|
|
|
3-2 %, цемент 7-6 % |
1300-1500 |
0,41-0,58 |
|
11 |
Битумоцементогрунт с перлитом, состава: перлитовый щебень 25-20 %, песок 75-80 %, цемент 3-4 %, битум 12-10 % (от массы песка, перлита и цемента) |
1400 |
0,52-0,58 |
|
12 |
Цементогрунт с аглопоритом, состава: - супесь или песок 70-80 % - аглопорит 30-20 % - цемент 6 % |
1700-1800 |
0,64-0,75 |
|
13 |
Шлакобетон |
1600 |
0,58 |
|
14 |
Керамзитобетон |
1400 |
0,75 |
|
15 |
Стиропорбетон |
1000-1100 |
0,23 |
|
16 |
Слабопрочные известняки, укрепленные известью |
2000 |
1,16 |
|
17 |
Суглинок, укрепленный 6-12 % цемента |
1750-1900 |
1,45 |
|
18 |
Суглинок, укрепленный 2-5 % цемента и 6-2 % известью |
1800-1900 |
1,33 |
|
19 |
Супесь, укрепленная 8-10 % цемента |
1700-1900 |
1,51 |
|
20 |
Пенопласт |
38,5-60 |
0,03-0,052 |
|
21 |
Пеноплэкс |
38,5-50 |
0,03-0,032 |
|
22 |
Каменноугольная золошлаковая, укрепленная 6-8 % цемента |
1600 |
0,7 |
|
23 |
Шлак топочный |
800 |
0,46 |
|
24 |
Щебень из гранита |
1800 |
1,86 |
|
25 |
Щебень из известняка |
1600 |
1,39 |
|
26 |
Гравий |
1800 |
1,86 |
|
27 |
Песок крупный талый |
2000 |
1,74 |
|
|
То же, мерзлый |
2000 |
2,32 |
|
28 |
Песок средней крупности талый |
1950 |
1,91 |
|
|
То же, мерзлый |
1950 |
2,44 |
|
29 |
Песок мелкий талый |
1850 |
1,91 |
|
|
То же, мерзлый |
1850 |
2,32 |
|
30 |
Песок пылеватый талый |
1750 |
1,80 |
|
|
То же, мерзлый |
1750 |
2,20 |
|
31 |
Супесь талая |
2100 |
1,80 |
|
|
То же, мерзлая |
2100 |
2,03 |
|
32 |
Суглинок и глина талые |
2000 |
1,62 |
|
|
То же, мерзлые |
2000 |
1,97 |
|
33 |
Лессы талые |
1500 |
1,51 |
|
|
То же, мерзлые |
1500 |
2,09 |
|
34 |
Одномерный гранитный щебень, обработанный вязким битумом |
1850 |
1,28 |
|
35 |
Гравийно-песчаная смесь |
2000 |
2,10 |
|
36 |
Гравийно-песчаная смесь, укрепленная 10 % цемента |
2000 |
2,02 |
|
Определение расчетного числа дней в году для вычисления суммарного числа приложения расчетной нагрузки за проектный срок службы конструкции
П.6.1. Входящие в выражения 3.6 и 3.7 раздела 3 основного текста расчетное число расчетных дней в году (Трдг)1 за проектный срок службы конструкции (Тсл) должно устанавливаться по данным специальных региональных исследований и закрепляться в региональных нормах, утверждаемых в установленном порядке.
___________
1 Расчетным считается день, в течение которого сочетание состояния грунта земляного полотна по влажности и температуре асфальтобетонных слоев конструкции обеспечивают возможность накопления остаточной деформации в грунте земляного полотна или малосвязных слоях дорожной одежды.
При отсутствии региональных данных допускается использовать приведенные ниже рекомендации и табличные данные.
При отсутствии региональных норм на территории России допускается использовать данные рис. П.6.1 и табл. П.6.1.
Таблица П.6.1
Рекомендуемые значения Трдг в зависимости от местоположения дороги
Примерные географические границы районов |
Рекомендуемое количество расчётных дней в году (Трдг) |
|
1 |
2 |
3 |
1 |
Зона распространения вечномёрзлых грунтов севернее семидесятой параллели |
70 |
2 |
Севернее линии, соединяющей Онегу - Архангельск - Мезень - Нарьян-Мар - шестидесятый меридиан - до побережья Европейской части |
145 |
3 |
Севернее линии, соединяющей Минск - Смоленск - Калугу - Рязань - Саранск - сорок восьмой меридиан - до линии, соединяющей Онегу - Архангельск - Мезень - Нарьян-Мар |
125 |
4 |
Севернее линии, соединяющей Львов - Киев - Белгород - Воронеж - Саратов - Самару - Оренбург - шестидесятый меридиан до линии районов 2 и 3 |
135 |
5 |
Севернее линии, соединяющей Ростов-на-Дону - Элисту - Астрахань до линии Львов - Киев - Белгород - Воронеж - Саратов - Самара |
145 |
6 |
Южнее линии Ростов-на-Дону - Элиста - Астрахань для Европейской части, южнее сорок шестой параллели для остальных территорий |
205 |
7 |
Восточная и Западная Сибирь, Дальний Восток (кроме Хабаровского и Приморского краев, Камчатской области), ограниченные с севера семидесятой параллелью, с юга сорок шестой параллелью |
130-150 (меньшие значения для центральной части) |
8 |
Хабаровский и Приморский края. Камчатская область |
140 |
Примечания: Значения величины Трдг на границах районов следует принимать по наибольшему из значений.
П.6.2. При отсутствии региональных норм расчетный срок службы дорожной одежды допускается назначить в соответствии с рекомендациями табл. П.6.2.
Таблица П.6.2
Рекомендуемый расчетный срок службы конструкции
Тип дорожной одежды |
Срок службы в дорожно-климатических зонах Тсл, лет |
|||
I, II |
III |
IV, V |
||
I |
Капитальные |
14-15-18 |
15-19 |
16-20 |
II |
Капитальные |
11-15 |
12-16 |
13-16 |
III |
Капитальные |
11-15 |
12-16 |
13-16 |
Облегченные |
10-13 |
11-14 |
12-15 |
|
IV |
Капитальные |
11-15 |
12-16 |
13-16 |
Облегченные |
8-10 |
9-11 |
10-12 |
|
V |
Облегченные |
8-10 |
9-11 |
10-12 |
переходные |
3-8 |
3-9 |
3-9 |
Рис. П.6.1. Карта районирования по количеству расчетных дней в году, Трдг
П.6.3. Значение коэффициента суммирования (при отсутствии других данных) следует принимать по табл. П.6.3.
Таблица П.6.3
Значение Кс при сроке службы дорожной одежды Тсл в годах |
||||
8 |
10 |
15 |
20 |
|
0,90 |
5,7 |
6,5 |
7,9 |
8,8 |
0,92 |
6,1 |
7,1 |
8,9 |
10,1 |
0,94 |
6,5 |
7,7 |
10,0 |
11,8 |
0,96 |
7,0 |
8,4 |
11,4 |
13,9 |
0,98 |
7,5 |
9,1 |
13,1 |
16,6 |
1,00 |
8,0 |
10,0 |
15,0 |
20,0 |
1,02 |
8,6 |
10,9 |
17,2 |
24,4 |
1,04 |
9,2 |
12,0 |
20,0 |
29,8 |
1,06 |
9,9 |
13,2 |
23,2 |
36,0 |
1,08 |
10,6 |
14,5 |
27,2 |
45,8 |
1,10 |
11,4 |
15,9 |
31,7 |
67,3 |
Методика экспериментального определения коэффициента влагопроводности грунта
Методика предусматривает определение коэффициента влагопроводности при начальных влажности и плотности за время увлажнения, необходимое для распределения влажности в образце от полной влагоемкости в единичном элементарном объеме на контактирующей с жидкостью поверхности, до начальной влажности на его границе. Увлажнение образца ведется снизу от поддерживаемого снизу уровня воды. Метод предполагает выполнение следующих граничных и начальных условий:
1. Начальная влажность и плотность грунтового образца должны быть равномерно распределены по его объему.
2. При увлажнении образца через нижнюю поверхность не допускается изменение влажности на его верхней поверхности при подходе к ней фронта увлажнения.
3. Увлажнение образца должно происходить безнапорно.
Выполнение этих условий достигается за счет применения прибора конструкции к.т.н. Г.И. Собко. Схема прибора представлена на рис. П.7.1.
Определение коэффициента влагопроводности грунта нарушенной структуры должно проводиться по следующей методике.
1. Для испытания отбирается проба грунта весом 2 кг, высушивается и размельчается.
2. Определяется вид грунта, его оптимальная влажность и максимальная плотность.
3. Высушенный и размельченный грунт увлажняется до оптимальной влажности.
4. Увлажненный грунт загружается в цилиндр-грунтонос, который навинчивается на трубку и вращением рукояти с винтом уплотняется до требуемого коэффициента уплотнения.
5. Форма для фильтра наполняется крупным песком с тщательным выравниванием по внутреннему обрезу формы.
Рис. П.7.1. Схема прибора для определения коэффициента влагопроводности грунта:
1 - трубка; 2 - тарированная пружина; 3 - уплотняющий штамп; 4 - плоский электрический датчик влажности; 5 - рукоятки с винтом; 6 - измерительная шкала пружины; 7 - разъемный цилиндр-грунтонос; 8 - верхняя насадка цилиндра-грунтоноса; 9 - центральная часть цилиндра-грунтоноса; 10 - съемная днищевая крышка цилиндра-грунтоноса; 11 - форма для фильтра; 12 - крупный песок; 13 - соединительная трубка; 14 - питающая камера; 15 - подкожная трубка; 16 - питающий сосуд; 17 - водомерная шкала; 18 - регистрирующий прибор; 19 - разъем трубки; 20 - микроамперметр; 21 - таймер; 22 - микроОВМ; 23 - световой индикатор; 24 - регулировочные ручки измерительного моста; 25 - режущая кромка для отбора проб грунта ненарушенной структуры; 26 - нижняя кромка трубки
6. Питающий сосуд заполняется дистиллированной водой и навинчивается на подводящую трубку питающей камеры. После стабилизации уровня воды в питающем сосуде по водомерной шкале отмечается ее исходный уровень Нн.
7. Цилиндр-грунтонос навинчивается на трубку так, чтобы уплотняющий штамп с датчиком влажности свободно опускался на поверхность грунтового образца.
8. К разъему трубки подсоединяется контактный шнур измерительного блока, производится его включение. Регулировочной ручкой измерительного блока стрелка миллиамперметра выводится в положение, соответствующее нулевой отметке шкалы.
9. Снимается днищевая крышка и трубка с цилиндром-грунтоносом устанавливается в форму для фильтра. Включается таймер.
Срабатывание датчика влажности, индицируемое звуковым и световым сигналами, свидетельствует о завершении увлажнения, после чего по водомерной шкале отмечается конечный уровень воды Нк в питающем сосуде. По разнице показателей Нн и Нк определяется количество впитавшейся в образец грунта воды (q).
Время увлажнения образца (t) определяется по показанию таймера, автоматически останавливаемого при срабатывании датчика влажности.
Вычисление коэффициента влагопроводности Квл грунта производится по зависимости:
, (П.7.1)
где WПВ - влажность, соответствующая полной влагоемкости, (дол. ед.), вычисляется по формуле:
WПВ = 1/rcк - 1/D, (П.7.2)
где D - удельная плотность частиц грунта, г/см3, равная 2,68 для супесей; 2,70 - для суглинков; 2,72 - для глин;
t - время увлажнения, час;
q - количество впитавшейся воды, г;
Wо - начальная влажность грунта, дол. ед.;
d - диаметр грунтового образца в грунтоносном стакане, равный 2 см.
Для получения значения Квл с требуемой доверительностью необходимо проведение не менее пяти испытаний. При этом обработка измерений должна вестись в такой последовательности:
1. вычисляется среднее экспериментальное значение коэффициента влагопроводности (Квлср) по результатам n испытаний;
2. вычисляется среднеквадратичное отклонение (S);
3. вычисляется верхняя граница для коэффициента влагопроводности, соответствующая одностороннему доверительному интервалу при уровне значимости a = 0,05 по формуле
Kвл.S = Kвлcp + tn-1, a × S/, (П.7.3)
где tn-1, a - коэффициент Стьюдента для уровня значимости и степени свободы a и (n - 1).
Использование коэффициента влагопроводности для определения величины морозного пучения и толщины теплоизолирующего слоя
В соответствии с данной методикой при прогнозировании величины морозного пучения предусматривается последовательное определение средней осенней влажности грунта рабочего слоя (Woccp), характеристики скорости промерзания (a), средней весенней влажности (Wвeccp). При этом учитываются продолжительность периода осеннего влагонакопления (tвл), продолжительность периода промерзания (tпp), расчетное удаление верха земляного полотна от уровня грунтовых (или поверхностных) вод (hв), характеристика суровости зимнего периода (s), выражаемая суммой градусо-суток отрицательной температуры воздуха. В табл. П.7.2 приведены значения tвл, tпр и s для 65 пунктов России. При отсутствии в перечне нужного пункта значения этих характеристик берутся для ближайшего по географическому расположению пункта.
Величина Woccp определяется по формуле:
Woccp = Woccp + Woтн (Wпв - Wo), (П.7.4)
где Woccp - начальная влажность грунта земляного полотна (весовая, доли единицы);
Wпв - влажность полной влагоемкости грунта (весовая, доли единицы);
D Woтн - отношение осеннего приращения влажности к максимально возможной величине приращения влажности грунта.
Величина Wпв вычисляется из соотношения:
где rcуx - плотность сухого грунта, г/см3;
D - плотность скелетных частиц грунта, находящаяся, как правило, в пределах 2,67 - 2,73.
Величина D Woтн устанавливается по номограмме рис. П.7.2 в зависимости от параметра
Рис. П.7.2. Номограмма для Wотн при значениях Foh, от 0,1 до 1
Параметр hв принимается по данным изысканий (обследований), а параметр hА, необходимый для использования номограммы рис П.7.2, определяется по формуле
hА = 160 - hДО, (П.7.7)
где hДО - суммарная толщина слоев дорожной одежды, см.
Среднее значение весенней влажности Wвeccp находим из выражения:
Wвeccp = Wh + (Woсcp - Wh) С, (П.7.8)
где Wh - влажность грунта по жидкой фазе в зоне первичного льдовыделения (при температуре грунта -0,5 ... -1,0 °С). Значения Wh разных грунтов приведены в таблице П.7.1;
С - коэффициент, определяемый по графику рис. П.7.3 в зависимости от величины критерия зимнего влагонакопления Z, вычисляемого, в свою очередь, из соотношения:
Рис. П. 7.3. График для определения коэффициента С, используемого для вычисления весенней влажности
Характеристика скорости промерзания грунта земляного полотна a определяется из соотношений:
При коэффициенте влагопроводности грунта до 2,0 см2/ч:
для автомобильных дорог I-II категорий
a = 3,24 + s0,079 - 0,005×hs, (П.7.10)
где hs - толщина слоя эффективной теплоизоляции (пенопласт, пеноплэкс), см;
s - характеристика суровости зимнего периода, определяемая для соответствующего региона из таблицы П.7.2;
для автомобильных дорог III-IV категорий
a = 3,24 + s0,079 - 0,013×hs, (П.7.11)
где hs - толщина слоя теплоизоляции только из местных материалов (керамзит, керамзитобетон, шлак, золошлаковая смесь, укрепленная цементом и др.);
При коэффициенте влагопроводности грунта 2,1 - 5,0 см2/ч:
для дорог I - III категорий a = 1,24 + 0,72 ln s - 0,05 hs; (П.7.12)
для дорог IV - V категорий a = 1,24 + 0,72 ln s - 0,013 hs. (П.7.13)
При Foh > 1 Wотн практически не зависит от ha/hb, поэтому приводим следующую таблицу значений Wотн в зависимости от Foh.
Foh |
1,0 |
1,2 |
1,4 |
1,6 |
1,8 |
Wотн |
0,95 |
0,96 |
0,97 |
0,98 |
0,99 |
При Foh > или = 2,1 можно принять, что Wотн = 1.
Таблица П.7.1
Значения влажности Wh и Wиз для различных грунтов
Wh |
Wнз |
hкр |
|
Песок пылеватый |
0,03-0,04 |
0,02 |
80 |
Супесь тяжелая пылеватая |
0,09-0,10 |
0,06 |
130 |
Суглинок легкий пылеватый |
0,12-0,13 |
0,08 |
120 |
Суглинок тяжелый пылеватый |
0,13-0,14 |
0,09 |
140 |
Глина пылеватая |
0,19-0,21 |
0,16 |
150 |
hкр - критическая глубина, при которой процесс пучения прекращается. В случае, если hпр > hкр, в расчет вводят hкр = hпр.
Грунты, характеризующиеся значением коэффициента влагопроводности более 5,0 см/ч, при неблагоприятных грунтово-гидрологических условиях, как правило, не должны применяться для устройства земляного полотна.
Расчет возможной величины морозного пучения поверхности дорожного покрытия ведется с использованием зависимости:
где hпр - глубина промерзания грунта, см;
q - плотность сухого грунта, г/см3;
d - плотность воды, г/см3;
Wнз - влажность (весовая), соответствующая незамерзающей воде, принимается по виду грунта из табл. П.7.1;
Wпв - влажность (весовая) полной влагоемкости, вычисляемая в свою очередь из соотношения (П.7.5).
Полная глубина промерзания грунта hпр определяется из следующих соотношений: при отсутствии теплоизоляционных слоев в составе дорожной одежды
при их наличии
hпp = (150,6 + 0,0027s) - (13,93 - 0,0067s) hs×b, (П.7.16)
где b = 1 при использовании в качестве теплоизоляции пенопласта или пеноплэкса;
Р = 0,25 при теплоизоляции из местных материалов.
Величина отношения Wвeccp/WТ, где WТ - влажность грунта земляного полотна на границе текучести, в соответствии с данной методикой может использоваться в качестве расчетной относительной влажности при определении прочностных и деформационных характеристик грунта рабочего слоя.
Таблица П.7.2
Климатические характеристики регионов России
Условные обозначения: tвл - продолжительность периода осеннего влагонакопления, часы; tпр - продолжительность периода промерзания, сутки; s - сумма градусочасов отрицательной температуры, умноженная на 0,001
tвл |
tпp |
s |
|
Александровск |
840 |
230 |
63.30 |
Архангельск |
672 |
261 |
55.12 |
Багдарин |
960 |
310 |
169.14 |
Белгород |
1392 |
137 |
16.22 |
Белогорка (Ленинградской) |
1056 |
250 |
36.00 |
Бисерть (Свердловской) |
648 |
283 |
73.35 |
Валдай |
1176 |
234 |
36.69 |
Владимир |
528 |
240 |
44.16 |
Вологда |
1464 |
199 |
38.21 |
Воронеж |
1176 |
124 |
15.28 |
Вятка |
936 |
232 |
55.31 |
Енисейск |
816 |
262 |
109.41 |
Иваново |
720 |
254 |
48.36 |
Ивдель (Свердловской) |
1296 |
182 |
47.17 |
Ижевск |
384 |
251 |
58.63 |
Иркутск |
1512 |
264 |
98.42 |
Йошкар-Ола |
240 |
259 |
59.26 |
Казань |
384 |
263 |
53.02 |
Калининград |
1776 |
245 |
52.92 |
Калуга |
1320 |
225 |
10.44 |
Кандалакша |
768 |
211 |
30.38 |
Кингисепп (Ленинградской) |
1272 |
239 |
30.21 |
Киселевск (Кемеровской) |
0 |
262 |
72.10 |
Кострома |
1464 |
151 |
28.27 |
Курган |
480 |
173 |
51.76 |
Курск |
1440 |
139 |
17.12 |
Магадан |
1872 |
250 |
70.00 |
Мезень |
624 |
274 |
65.76 |
Минусинск |
264 |
261 |
86.86 |
Москва |
1248 |
170 |
28.02 |
Мурманск |
912 |
255 |
35.90 |
Новгород Великий |
1680 |
151 |
28.03 |
Нижневартовск |
720 |
275 |
94.59 |
Нижний Новгород |
1440 |
182 |
26.21 |
Нолинск (Кировской обл.) |
312 |
254 |
57.71 |
Норск (Амурской) |
1704 |
260 |
132.29 |
Огурцово (Новосибирской) |
192 |
271 |
81.52 |
Оренбург |
0 |
240 |
56.83 |
Парабель (Томской) |
816 |
274 |
91.19 |
Пермь |
0 |
192 |
47.00 |
Пенза |
1152 |
259 |
50.56 |
Петербург |
1632 |
160 |
20.48 |
Петрозаводск |
1128 |
219 |
35.39 |
Порецкое (Чувашия) |
480 |
96 |
48.81 |
Псков |
1272 |
189 |
21.47 |
Ржев (Тверской) |
1008 |
241 |
40.10 |
Родино (Алтайский край) |
0 |
248 |
70.23 |
Рыбинск |
1152 |
231 |
41.40 |
Рязань |
864 |
193 |
29.64 |
Самара |
96 |
206 |
41.20 |
Саранск |
0 |
250 |
49.20 |
Саратов |
168 |
199 |
36.30 |
Смоленск |
1536 |
244 |
38.26 |
Сургут |
624 |
281 |
94.58 |
Сыктывкар |
600 |
268 |
69.47 |
Тамбов |
1368 |
142 |
23.17 |
Тимирязевский (Примор. край) |
1848 |
228 |
71.14 |
Тула |
936 |
205 |
29.52 |
Улан-Уде (Бурятия) |
0 |
238 |
94.44 |
Ульяновск |
240 |
256 |
54.07 |
Ханты-Мансийск |
672 |
266 |
85.55 |
Чекунда (Хабаровский край) |
1800 |
261 |
141.15 |
Челябинск |
240 |
173 |
36.54 |
Чита |
1344 |
275 |
129.36 |
Чишмы (Башкортостан) |
192 |
263 |
62.28 |
Требуется запроектировать дорожную одежду при следующих исходных данных:
- дорога располагается во II дорожно-климатической зоне, в Московской области;
- категория автомобильной дороги - I;
- заданный срок службы дорожной одежды - Тсл = 20 лет;
- заданная надежность Кн = 0,95;
- приведенная к нагрузке типа А (Приложение 1 табл. П.1.1) интенсивность движения на конец срока службы Np = 3200 авт/сут; приращение интенсивности q = 1,04;
- грунт рабочего слоя земляного полотна - супесь пылеватая с расчетной влажностью 0,7 WТ, относится к сильнопучинистым грунтам.
- материал для основания - щебеночно-гравийно-песчаная смесь, обработанная цементом марки 20;
- высота насыпи составляет 1,5 м, толщина дорожной одежды - 0,60 м;
- схема увлажнения рабочего слоя земляного полотна - III,
- глубина залегания грунтовых вод - 1,1 м.
Расчет на прочность.
1. Вычисляем суммарное расчетное количество приложений расчетной нагрузки за срок службы по формуле (3.6):
, где Кс = 29,8 (Приложение 6 табл. П.6.3).
Трдг = 125 дней (табл. П.6.1), Кn = 1,49 (табл. 3.3)
авт.
2. Предварительно назначаем конструкцию и расчетные значения расчетных параметров:
- для расчета по допускаемому упругому прогибу (Приложение 2 табл. П.2.5, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.9);
- для расчета по условию сдвигоустойчивости (Приложение 2 табл. П.2.4, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.6);
- для расчета на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе (Приложение 3 табл. П.3.1 и Приложение 3 табл. П.3.6).
№ |
Материал слоя |
h слоя, см |
Расчет упруг. прогибу, Е, МПа |
Расчет по усл. сдвигоуст., Е, Па |
Расчет на растяжение при изгибе |
|||
Е, МПа |
Ro, МПа |
a |
m |
|||||
1. |
Асфальтобетон плотный на БНД марки 60/90 |
4 |
3200 |
1800 |
4500 |
9,80 |
5,2 |
5,5 |
2. |
Асфальтобетон пористый на БНД марки 60/90 |
8 |
2000 |
1200 |
2800 |
8,0 |
5,9 |
4,3 |
3. |
Асфальтобетон высокопористый на БНД марки 60/90 |
22 |
2000 |
1200 |
2100 |
5,65 |
6,3 |
4,0 |
4. |
Укрепленная щебеночно-гравийно-песчаная смесь |
26 |
420 |
420 |
420 |
- |
- |
- |
5. |
Супесь пылеватая Wo = 0,7WТ |
- |
46 |
46 |
46 |
- |
- |
- |
3. Расчет по допускаемому упругому прогибу ведем послойно, начиная с подстилающего грунта по номограмме рис. 3.1:
1)
по Приложению 1 табл. П.1.1 р = 0,6 МПа, D = 37 см
МПа
2)
МПа
3)
МПа
4)
Еобщ = 0,165×3200 = 528 МПа
5) Требуемый модуль упругости определяем по формуле (3.9):
Етр = 98,65[lg(SNp) - 3,55] = 98,65[lg 7179494 - 3,55] = 326 МПа
6) Определяем коэффициент прочности по упругому прогибу:
Требуемый минимальный коэффициент прочности для расчета по допускаемому упругому прогибу - 1,30 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет условию прочности по допускаемому упругому прогибу.
4. Рассчитываем конструкцию по условию сдвигоустройчивости в грунте.
Действующие в грунте активные напряжения сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
В качестве нижнего слоя модели принимаем грунт (супесь пылеватая) со следующими характеристиками: (при Wp = 0,7WТ и SNp = 7 179.494 авт.) Ен = 46 МПа (табл. П.2.4), j = 12° и с = 0,004 МПа (табл. П.2.4).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и и при j = 12° с помощью номограммы (рис. 3.3) находим удельное активное напряжение сдвига от единичной нагрузки: = 0,015 МПа.
Таким образом: Т = 0,015×0,6 = 0,009 МПа.
Предельное активное напряжение сдвига Тпр в грунте рабочего слоя определяем по формуле (3.14), где СN = 0,004 МПа, Кд = 1,0.
Zоп = 4 + 8 + 22 + 26 = 60 см.
jст = 35° (Приложение 2 табл. 2.4)
ycp = 0,002 кг/см2
Тпр = 0,004 + 0,1×0,002×60×tg 35° = 0,0123,
где 0,1 - коэффициент для перевода в МПа.
, что больше (табл. 3.1).
Следовательно, конструкция удовлетворяет условию прочности по сдвигу.
5. Рассчитываем конструкцию на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.
Расчет выполняем в следующем порядке:
а) Приводим конструкцию к двухслойной модели, где нижний слой модели - часть конструкции, расположенная ниже пакета асфальтобетонных слоев, т.е. щебеночное основание и грунт рабочего слоя. Модуль упругости нижнего слоя определяем по номограмме рис. 3.1.
Ен = = 122 МПа
К верхнему слою относят все асфальтобетонные слои.
Модуль упругости верхнего слоя (hв = 34 см) устанавливаем по формуле (3.12)
МПа
б) По отношениям и по номограмме рис. 3.4 определяем = 0,75.
Расчетное растягивающее напряжение вычисляем по формуле (3.16):
= 0,75 0,6 0,85 = 0,38 МПа.
в) Вычисляем предельное растягивающее напряжение по формуле (3.17):
при Ro = 5,65 МПа для нижнего слоя асфальтобетонного пакета (табл. П.3.1)
vR = 0,10 (табл. П.4.1)
t = 1,71 (табл. П.4.2)
- (формула 3.18)
m = 4; a = 6,3 (табл. П.3.1); SNp = 7 179 494 авт.;
k2 = 0,85 (табл. 3.6)
RN = 5,65×0,122×0,85(1 - 0,1×1,71) = 0,49 МПа
г) = 1,41, что больше, чем = 1,0 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет всем критериям прочности.
Проверка конструкции на морозоустойчивость
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности -lод(i) Вт/(мК) (Табл. П.5.1) |
Плотный асфальтобетон |
0,04 |
1,40 |
Пористый асфальтобетон |
0,08 |
1,25 |
Высокопористый асфальтобетон |
0,22 |
1,05 |
Укрепленная щебеночно-гравийно-песчаная смесь |
0,26 |
2,02 |
1. По карте рис. 4.4. находим среднюю глубину промерзания zпр(сp) для условий г. Москвы и по формуле (4.3) определяем глубину промерзания дорожной конструкции zпр:
zпр = zпр(cp)×1,38 = 1,4×1,38 = 1,93 м » 2 м.
2. Для глубины промерзания 2 м по номограмме рис. 4.3 по кривой для сильнопучинистых грунтов определяем величину морозного пучения для осредненных условий:
lпр(ср) = 8,5 см.
По таблицам и графикам находим коэффициенты КУГВ = 0,61 (рис. 4.1): Кпл = 1,2 (табл. 4.4); Кгр = 1,1 (рис. 4.5); Кнагр = 0,92 (рис. 4.2); Квл = 1,1 (рис. 4.6).
По формуле 4.2 находим величину пучения для данной конструкции:
lпуч = lпуч(ср)×Кугв×Кпл×Кгр×Кнагр×Квл = 8,5×0,61×1,2×1,1×0,92×1,1 = 6,9 см.
Поскольку для данного типа дорожной одежды допустимая величина морозного пучения согласно табл. 4.3 составляет 4 см, следует назначить морозозащитный слой и выполнить расчет его толщины.
3. Предварительно ориентировочно определяем необходимую толщину морозозащитного слоя при допустимой величине морозного пучения lдоп = 4 см.
Для этого определяем величину морозного пучения для осредненных условий, при которой пучение для данной конструкции не превышает 4 см:
lпуч.ср = l(доп)/(Кугв×Кпл×Кгр×Кнагр×Квл = 4:(0,61×1,2×1,1×0,92×1,1) = 4,9 см.
По номограмме рис. 4.3 определяем требуемую толщину дорожной одежды hод = 0,92 м, отсюда толщина морозозащитного слоя hмрз = 0,92 - 0,60 = 0,32 м.
Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1). Задаемся hмрз = 0,30 м.
4. Для использования в морозозащитном слое назначаем мелкозернистый песок с коэффициентами теплопроводности lг = 1,91 Вт/(мК) и lм = 2,32 Вт/(мК) соответственно в талом и мерзлом состояниях и определяем lср:
lср = (0,91 + 2,32)/2 = 2,12 Вт/(мК).
5. По формуле (4.7) определяем термическое сопротивление дорожной одежды без морозозащитного слоя
= 0,04 : 1,40 + 0,08 : 1,25 + 0,22 : 1,5 + 0,26 : 2,2 = 0,43 (м2 К/Вт).
6. По карте изолиний рис. 4.5 определяем номер изолинии - V.
7. По табл. 4.9 находим Спуч = 1,35.
8. По табл. 4.10 при общей толщине дорожной одежды hод = 0,90 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,61.
9. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,61) = 4,9 см.
10. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпp = 0,60 (м2К/Вт).
11. По табл. 4.7 Код = 1,0; Кувл = 1,0 (п. 4.11); d = 0.95.
12. По формуле (4.8) Rод(тр) = Rпр×Код×Кувл×d = 0,57 (м2К/Вт).
13. По формуле (4.6) hмз = (Rод(тр) - Rод(о)×lмрз = (0,57 - 0,43)×2,12 = 0,29 м.
14. Поскольку разница между полученным и заданным значениями hмз не превышает 5 см, принимаем hмз = 0,30 м.
Пример 2.
1. Задание: требуется запроектировать дорожную одежду при следующих исходных данных:
- дорога располагается во II дорожно-климатической зоне, в Московской области;
- категория автомобильной дороги - I;
- заданный срок службы дорожной одежды - Тсл = 20 лет;
- заданная надежность Кн = 0,95;
- приведенная к нагрузке типа А (Приложение 1 табл. П.1.1) интенсивность движения на конец срока службы Np = 3200 авт/cyт; приращение интенсивности q = 1,04;
- грунт рабочего слоя земляного полотна - супесь пылеватая с расчетной влажностью 0,7 Wт, относится к сильнопучинистым грунтам;
- материал для основания - щебеночно-гравийная песчаная смесь, обработанная цементом марки 20 и песок средней крупности;
- высота насыпи составляет 1,5 м;
- схема увлажнения рабочего слоя земляного полотна - III;
- глубина залегания грунтовых вод - 0,9 м.
1. Вычисляем суммарное расчетное количество приложений расчетных нагрузок за срок службы:
Для расчета по допускаемому упругому прогибу и условию сдвигоустойчивости по формуле (3.6)
, где Кс = 29,8 (Приложение 6 табл. П.6.3).
Трдг = 125 дней (табл. П.6.1), Кn = 1,49 (табл. 3.3)
авт.
2. Предварительно назначаем конструкцию и расчетные значения расчетных параметров:
- для расчета по допускаемому упругому прогибу (Приложение 3 табл. П.2.5, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.9);
- для расчета по условию сдвигоустройчивости (Приложение 2 табл. П.2.4. Приложение 2 табл. П.2.6, Приложение 3 табл. П.3.2 и приложение 3 табл. П.3.6);
- для расчета на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе (Приложение 3 табл. П.3.1 и Приложение 3 табл. П.3.6).
№ |
Материал слоя |
h слоя, см |
Расчет по допустимому упруг. прогибу, Е, МПа |
Расчет по усл. сдвигоустойчивости, Е, Па |
Расчет на растяжение при изгибе |
|||
Е, МПа |
Ro, МПа |
a |
m |
|||||
1. |
Асфальтобетон плотный на БНД марки 60/90 |
4 |
3200 |
1800 |
4500 |
9,80 |
5,2 |
5,5 |
2. |
Асфальтобетон пористый на БНД марки 60/90 |
8 |
2000 |
1200 |
2800 |
8,0 |
5,9 |
4,3 |
3. |
Асфальтобетон высокопористый на БНД марки 60/90 |
22 |
2000 |
1200 |
2100 |
5,65 |
6,3 |
4,0 |
4. |
Укрепленная щебеночно-гравийно-песчаная смесь |
15 |
400 |
400 |
400 |
- |
- |
- |
5. |
Песок средней крупности |
30 |
120 |
120 |
120 |
- |
- |
- |
6. |
Супесь пылеватая Wp = 0,7Wт |
- |
46 |
46 |
46 |
- |
- |
- |
3. Расчет по допускаемому упругому прогибу ведем послойно, начиная с подстилающего грунта по номограмме рис. 3.1:
1)
по Приложению 1 табл. П.1.1 р = 0,6 МПа, D = 37 см
МПа
2)
МПа
3)
МПа
4)
МПа
5)
МПа
Требуемый модуль упругости определяем по формуле (3.9):
Етр = 98,65[lg(SNp) - 3,55] = 98,65[lg 7179494 - 3,55] = 326 МПа
6) Определяем коэффициент прочности по упругому прогибу:
.
Требуемый минимальный коэффициент прочности для расчета по допускаемому упругому прогибу 1,30 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет условию прочности по допускаемому упругому прогибу.
4. Рассчитываем конструкцию по условию сдвигоустройчивости в грунте.
Действующие в грунте активные напряжения сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
В качестве нижнего слоя модели принимаем грунт (супесь пылеватая) со следующими характеристиками: (при Wp = 0,7WТ и SNp = 7 179.494 авт.) Ен = 46 МПа (табл. П.2.5), j = 12° и с = 0,004 МПа (табл. П.2.4).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и и при j = 12° с помощью номограммы (рис. 3.3) находим удельное активное напряжение сдвига: = 0,0115 МПа.
По формуле (3.13) Т = 0,0115×0,6 = 0,007 МПа.
Предельное активное напряжение сдвига Тпр в грунте рабочего слоя определяем по формуле (3.14), где СN = 0,004 МПа, Кд = 1,0.
Zоп = 4 + 8 + 22 + 15 + 30 = 79 см.
jст = 35° (табл. П2.4)
ycp = 0,002 кг/см2
0,1 - коэффициент для перевода в МПа
Тпр = 0,004 + 0,1×0,002×79×tg 35° = 0,015,
, что больше (табл. 3.1).
Следовательно, конструкция удовлетворяет условию прочности по сдвигу в грунте.
5. Рассчитываем конструкцию по условию сдвигоустойчивости в песчаном слое основания.
Действующие в песчаном слое основания активное напряжение сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
Нижнему слою модели присваивают следующие характеристики: МПа (п. 3.32); j = 27° и с = 0,004 МПа (табл. П.2.6).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и и при j = 27° с помощью номограммы (рис. 3.2) находим удельное активное напряжение сдвига: = 0,017 МПа.
По формуле (3.13): Т = 0,017×0,6 = 0,102 МПа.
Предельное активное напряжение сдвига Тпр в песчаном слое определяем по формуле (3.14), где СN = 0,004 МПа, Ко = 4,0.
Zоп = 4 + 8 + 22 + 15 = 49 см.
jст = 32° (табл. П.2.6)
ycp = 0,002 кг/см2
Тпр = 0,002×4 + 0,1×0,002×49×tg 32° = 0,0141
По табл. 3.1 , следовательно, условие по сдвигоустойчивости в песчаном слое основания выполнено.
6. Рассчитываем конструкцию на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.
Расчет выполняем в следующем порядке:
а) Приводим конструкцию к двухслойной модели, где нижний слой модели - часть конструкции, расположенная ниже пакета асфальтобетонных слоев, т.е. щебеночное основание и грунт рабочего слоя. Модуль упругости нижнего слоя модели определяем по номограмме рис. 3.1, как общий модуль для двухслойной системы.
Ен = = 122 МПа
К верхнему слою относят все асфальтобетонные слои.
Модуль упругости верхнего слоя устанавливаем по формуле (3.12)
МПа.
б) По отношениям и по номограмме рис. 3.4 определяем = 0,75.
Расчетное растягивающее напряжение вычисляем по формуле (3.16):
= 0,75 0,6 0,85 = 0,38 МПа.
в) Вычисляем предельное растягивающее напряжение по формуле (3.17):
при Ro = 5,65 МПа для нижнего слоя асфальтобетонного пакета (табл. П.3.1)
vR = 0,10 (табл. П.4.1)
t = 1,71 (табл. П.4.2)
- (формула 3.18)
SNp = 4818452 авт.; m = 4; a = 6,3 (табл. П.3.1);
k2 = 0,85 (табл. 3.6)
RN = 5,65×0,122×0,85(1 - 0,1×1,71) = 0,49 МПа.
г) = 1,28, что больше, чем = 1,0 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет всем критериям прочности.
Проверка конструкции на морозоустойчивость
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности lод(i), Вт/(мК) (Табл. П.5.1) |
Плотный асфальтобетон |
0,04 |
1,40 |
Пористый асфальтобетон |
0,08 |
1,25 |
Высокопористый асфальтобетон |
0,22 |
1,05 |
Укрепленная щебеночно-гравийно-песчаная смесь |
0,15 |
2,02 |
Песок средней крупности |
0,30 |
lср = (lм ± lт)/2 = (2,44 + 1,91)/2 = 2,18* |
* Поскольку в период промерзания дорожной конструкции песок находится сначала в талом, а затем в мерзлом состоянии, в расчет вводят среднеарифметическое значение коэффициентов теплопроводности lт и lм.
1. В соответствии с п.п. 1-2 Проверки на морозоустойчивость Примера 1 определяем глубину промерзания Zпp = 2,0 м и величину пучения для осредненных условий lпуч.ср = 6,2 см.
По таблицам и графикам находим коэффициенты Кугв = 0,61 (рис. 4.1); Кпл = 1,2 (табл. 4.4); Кгр = 1,1 (рис. 4.5); Кнагр = 0,92 (рис. 4.2); Квл = 1,1 (рис. 4.6). По формуле 4.2 находим величину пучения для данной конструкции:
lпуч = lпуч(ср)×Кугв×Кпл×Кгр×Кнагр×Квл = 6,2×0,61×1,2×1,1×0,92×1,1 = 5,0 см.
2. Поскольку для данного типа дорожной одежды допустимая величина морозного пучения согласно табл. 4.3 составляет 4 см, следует назначить морозозащитный слой и выполнить расчет его толщины. Предварительно ориентировочно определяем необходимую толщину морозозащитного слоя при допустимой величине морозного пучения lдоп = 4 см.
Для этого предварительно определяем величину морозного пучения для осредненных условий, при которой морозное пучение для данной конструкции не превышает 4 см:
lпуч.ср = l(доп)/(Кугв×Кпл×Кгр×Кнагр×Квл = 4:(0,61×1,2×1,1×0,92×1,1) = 4,9 см.
По номограмме рис. 4.3 определяем требуемую толщину дорожной одежды hод = 0,92 м, отсюда толщина морозозащитного слоя hмрз = 0,92 - 0,79 = 0,13 м.
3. Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1). По формуле (4.7) определяем термическое сопротивление дорожной одежды без морозозащитного слоя
= 0,04 : 1,40 + 0,08 : 1,25 + 0,22 : 1,05 + 0,15 : 2,2 + 0,30 : 2,18 = 0,51 (м2 К/Вт).
4. По карте изолиний рис. 4.5 определяем номер изолинии - V.
5. По табл. 4.9 находим Спуч = 1,35.
6. По табл. 4.10 при общей толщине дорожной одежды hод = 0,90 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,61.
7. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,61) = 4,9 см.
8. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпp = 0,60 (м2К/Вт).
9. По табл. 4.7 Код = 1,0; Кувл = 1,0 (п. 4.11); d = 0.95.
По формуле (4.8) Rод(тр) = Rпр×Код×Кувл×d = 0,57 (м2К/Вт).
10. По формуле (4.6) hмз = (Rод(тр) - Rод(о))×lмрз = (0,57 - 0,51)×2,18 = 0,13 м.
Поскольку разница между полученным и заданным значениями hмз не превышает 5 см, принимаем hмз = 10 м.
Пример 3.
Требуется запроектировать дорожную одежду при следующих исходных данных:
- дорога располагается во II дорожно-климатической зоне, в Московской области;
- категория автомобильной дороги - II;
- заданный срок службы дорожной одежды - Тсл = 15 лет;
- приведенная к нагрузке типа А (Приложение 1 табл. П.1.1) интенсивность движения на конец срока службы Np = 1800 авт/сут; приращение интенсивности q = 1,04;
- грунт рабочего слоя земляного полотна - супесь пылеватая с расчетной влажностью 0,7 Wт, которая относится к сильнопучинистым грунтам;
- схема увлажнения рабочего слоя земляного полотна - III;
- глубина залегания грунтовых вод - 0,6 м.
- высота насыпи составляет 1,5 м;
- материал для основания - щебеночная смесь С3.
1. Вычисляем суммарное расчетное количество приложений расчетной нагрузки за срок службы:
Для расчета по допускаемому упругому прогибу и условию сдвигоустойчивости по формуле (3.6)
, где Кс = 20 (Приложение 6 табл. П.6.3).
Трдг = 125 дней (табл. П.6.1),
Кn = 1,49 (табл. 3.3)
авт.
2. Предварительно назначаем конструкцию и расчетные значения расчетных параметров:
- для расчета по допускаемому упругому прогибу (Приложение 2 табл. П.2.5, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.8);
- для расчета по условию сдвигоустройчивости (Приложение 2 табл. П.2.4, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.8);
- для расчета на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе (Приложение 3 табл. П.3.1 и Приложение 3 табл. П.3.8);
- высота насыпи составляет 1,5 м;
- схема увлажнения рабочего слоя земляного полотна - III;
- глубина залегания грунтовых вод - 0,6 м.
№ |
Материал слоя |
h слоя, см |
Расчет по допустимому упруг. прогибу, Е, МПа |
Расчет по усл. сдвигоустойчивости, Е, Па |
Расчет на растяжение при изгибе |
|||
Е, МПа |
Ro, МПа |
a |
m |
|||||
1. |
Асфальтобетон плотный на БНД марки 60/90 |
4 |
3200 |
1800 |
4500 |
9,80 |
5,2 |
5,5 |
2. |
Асфальтобетон пористый на БНД марки 60/90 |
8 |
2000 |
1200 |
2800 |
8,0 |
5,9 |
4,3 |
3. |
Асфальтобетон высокопористый на БНД марки 60/90 |
14 |
2000 |
1200 |
2100 |
5,65 |
6,3 |
4,0 |
4. |
Щебеночная смесь |
34 |
290 |
290 |
290 |
- |
- |
- |
5. |
Супесь пылеватая Wp = 0,7Wт |
- |
46 |
46 |
46 |
- |
- |
- |
3. Расчет по допускаемому упругому прогибу ведем послойно, начиная с подстилающего грунта по номограмме рис. 3.1:
1)
по Приложению 1 табл. П.1.1 р = 0,6 МПа, D = 37 см
МПа
2)
МПа
3)
МПа
4)
МПа
5) Требуемый модуль упругости определяем по формуле (3.9):
Етр = 98,65[lg(SNp) - 3,55] = 98,65[lg 2710379 - 3,55] = 284 МПа
6) Определяем коэффициент прочности по упругому прогибу:
.
Требуемый минимальный коэффициент прочности для расчета по допускаемому упругому прогибу 1,20 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет условию прочности по допускаемому упругому прогибу.
4. Рассчитываем конструкцию по условию сдвигоустройчивости в грунте.
Действующие в грунте активные напряжения сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
В качестве нижнего слоя модели принимаем грунт (супесь пылеватая) со следующими характеристиками: (при Wp = 0,7Wт и SNp = 2710379 авт.) Ен = 46 МПа (табл. П.2.5); j = 12° и с = 0,004 МПа (табл. П.2.4).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и и при j = 12° с помощью номограммы (рис. 3.3) находим удельное активное напряжение сдвига: = 0,012 МПа.
По формуле (3.13): Т = 0,012×0,6 = 0,0072 МПа.
Предельное активное напряжение сдвига Тпр в песчаном слое определяем по формуле (3.14), где СN = 0,004 МПа, Кд = 4,0.
Zоп = 4 + 8 + 14 + 34 = 60 см.
jст = 35° (табл. П.2.6)
ycp = 0,002 кг/см2
Тпр = 0,004 + 0,1×0,002×60×tg 35° = 0,0124,
где 0,1 - коэффициент для перевода в МПа
, что больше (табл. 3.1).
5. Рассчитываем конструкцию на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.
Расчет выполняем в следующем порядке:
а) Приводим конструкцию к двухслойной модели, где нижний слой модели - часть конструкции, расположенная ниже пакета асфальтобетонных слоев, т.е. щебеночное основание и грунт рабочего слоя. Модуль упругости нижнего слоя модели определяем по номограмме рис. 3.1.
Ен = 122 МПа
К верхнему слою относят все асфальтобетонные слои.
Модуль упругости верхнего слоя устанавливаем по формуле (3.12)
МПа.
Модули упругости асфальтобетонных слоев назначаем по табл. П.3.1.
б) По отношениям и по номограмме рис. 3.4 определяем = 1,1 МПа.
Расчетное растягивающее напряжение вычисляем по формуле (3.16):
= 1,1 0,6 0,85 = 0,56 МПа.
в) Вычисляем предельное растягивающее напряжение по формуле (3.17):
при Ro = 5,65 МПа для нижнего слоя асфальтобетонного пакета (табл. П.3.1)
vR = 0,10 (табл. П.4.1); t = 1,71 (табл. П.4.2)
- (формула 3.18)
m = 4; a = 6,3 (табл. П.3.1);
SNp = 2710379 авт.
k2 = 0,85 (табл. 3.6)
RN = 5,65×0,155×0,85(1 - 0,1×1,71) = 0,62
г) = 1,10, что больше, чем = 1,0 (табл. 3.1).
Вывод: выбранная конструкция удовлетворяет всем критериям прочности.
Проверка на морозоустойчивость
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности lод(i), Вт/(мК) |
Плотный асфальтобетон |
0,04 |
1,40 |
Пористый асфальтобетон |
0,08 |
1,25 |
Высокопористый асфальтобетон |
0,14 |
1,05 |
Щебеночная смесь |
0,34 |
2,10 |
2. Аналогично п.п. 1-3 Проверки на морозоустойчивость Примера 1 предварительно ориентировочно определяем требуемую толщину дорожной одежды hод = 1,05 м и толщину морозозащитного слоя hмрз = 1,05 - 0,60 = 0,45 м. Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1). Задаемся hмрз = 0,45.
Для использования в морозозащитном слое назначаем крупнозернистый песок с коэффициентами теплопроводности lг = 1,74 Вт/(мК) и lм = 2,32 Вт/(мК) соответственно в талом и мерзлом состояниях и определяем lср
lср = (1,74 + 2,32)/2 = 2,03 Вт/(мК)
3. По формуле (4.7) определяем термическое сопротивление дорожной одежды без морозозащитного слоя
= 0,04 : 1,40 + 0,08 : 1,25 + 0,14 : 1,05 + 0,15 : 2,2 + 0,34 : 2,10 = 0,39 (м2 К/Вт).
4. По карте изолиний рис. 4.5 определяем номер изолинии - V;
5. По табл. 4.9 находим Спуч = 1,35;
6. По табл. 4.10 при общей толщине дорожной одежды hод = 1,05 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,645;
7. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,645) = 4,59 см;
8. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпр = 0,79 (м2К/Вт);
9. По табл. 4.7 Код = 0,90; Кувл = 1,0 (п. 4.11); d = 0,95;
10. По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,68 (м2К/Вт);
11. По формуле (4.5) hмз = (Rод(тр) - Rод(о))×lмрз = (0,68 - 0,39)×2,03 = 0,59 м.
Разница между полученным и заданным значениями hмз превышает 5 см. Расчет продолжаем, задавшись hмз = 0,55 см.
12. По табл. 4.10 при общей толщине дорожной одежды hод = 1,35 м при помощи интерполяции определяем Ср = 0,615;
13. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,615) = 4,82 см;
14. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпр = 0,79 (м2К/Вт);
15. По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,68 (м2К/Вт);
16. По формуле (4.5) hмз = (Rод(тр) - Rод(о))×lмрз = (0,68 - 0,39)×2,03 = 0,59 м.
Поскольку разница между полученным и заданным значениями hмз не превышает 5 см, принимаем hмз = 0,55 см.
Пример 4.
Требуется запроектировать дорожную одежду при следующих исходных данных:
- дорога располагается во II дорожно-климатической зоне, в Московской области;
- категория автомобильной дороги - II;
- заданный срок службы дорожной одежды - Тcл = 15 лет;
- приведенная к нагрузке типа А (Приложение 1 табл. П.1.1) интенсивность движения на конец срока службы Np = 1800 авт/сут; приращение интенсивности q = 1,04;
- грунт рабочего слоя земляного полотна - супесь пылеватая с расчетной влажностью 0,7 Wт, которая относится к сильнопучинистым грунтам;
- материал для основания - щебеночно-гравийно-песчаная смесь, укрепленная цементом и песок средней крупности;
- высота насыпи составляет 1,5 м;
- схема увлажнения рабочего слоя земляного полотна - III;
- глубина залегания грунтовых вод - 0,6 м.
1. Вычисляем суммарное расчетное количество приложений за срок службы:
Для расчета по допускаемому упругому прогибу и условию сдвигоустойчивости по формуле (3.6)
, где Кс = 20 (Приложение 6 табл. П.6.3).
Трдг = 125 дней (табл. П.6.1),
Кn = 1,49 (табл. 3.3)
авт.
2. Предварительно назначаем конструкцию и расчетные значения расчетных параметров:
- для расчета по допускаемому упругому прогибу (Приложение 2 табл. П.2.5, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.8);
- для расчета по условию сдвигоустойчивости (Приложение 2 табл. П.2.4, Приложение 2 табл. П.2.6, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.6);
- для расчета на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе (Приложение 3 табл. П.3.1 и Приложение 3 табл. П.3.6).
№ |
Материал слоя |
h слоя, см |
Расчет по допустимому упруг. прогибу, Е, МПа |
Расчет по усл. сдвигоустойчивости, Е, Па |
Расчет на растяжение при изгибе |
|||
Е, МПа |
Ro, МПа |
a |
m |
|||||
1. |
Асфальтобетон плотный на БНД марки 60/90 |
4 |
3200 |
1800 |
4500 |
9,80 |
5,2 |
5,5 |
2. |
Асфальтобетон пористый на БНД марки 60/90 |
8 |
2000 |
1200 |
2800 |
8,0 |
5,9 |
4,3 |
3. |
Асфальтобетон высокопористый на БНД марки 60/90 |
14 |
2000 |
1200 |
2100 |
5,65 |
6,3 |
4,0 |
4. |
Щебеночно-гравийно-песчаная смесь, укрепленная цементом |
26 |
400 |
400 |
400 |
- |
- |
- |
5. |
Песок средней крупности |
20 |
120 |
120 |
120 |
- |
- |
- |
6. |
Супесь пылеватая Wp = 0,7Wт |
- |
46 |
46 |
46 |
- |
- |
- |
3. Расчет по допускаемому упругому прогибу ведем послойно, начиная с подстилающего грунта по номограмме рис. 3.1:
1)
по Приложению 1 табл. П.1.1 р = 0,6 МПа, D = 37 см
МПа
2)
МПа
3)
МПа
4)
МПа
5)
МПа
6) Требуемый модуль упругости определяем по формуле (3.9):
Етр = 98,65[lg(SNp) - 3,55] = 98,65[lg 2710379 - 3,55] = 284 МПа
7) Определяем коэффициент прочности по упругому прогибу:
.
Требуемый минимальный коэффициент прочности для расчета по допускаемому упругому прогибу 1,20 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет условию прочности по допускаемому упругому прогибу.
4. Рассчитываем конструкцию по условию сдвигоустойчивости в грунте. Действующие в грунте активные напряжения сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
В качестве нижнего слоя модели принимаем грунт (супесь пылеватая) со следующими характеристиками: (при Wp = 0,7Wт и SNp = 2710379 авт.) Ен = 46 МПа (табл. П.2.5); j = 12° и с = 0,004 МПа (табл. П.2.4).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и , и при j = 12° с помощью номограммы (рис. 3.3) находим удельное активное напряжение сдвига: = 0,0135 МПа.
Таким образом: Т = 0,0135×0,6 = 0,0081 МПа.
Предельное активное напряжение сдвига Тпр в песчаном слое определяем по формуле (3.14), где СN = 0,004 МПа, Кд = 1,0.
Zоп = 4 + 8 + 14 + 26 + 20 = 72 см.
jст = 35° (табл. 2.4); ycp = 0,002 кг/см2
Тпр = 0,004 + 0,1×0,002×72×tg 35° = 0,0141 МПа,
где 0,1 - коэффициент для перевода в МПа
, что больше (табл. 3.1).
5. Рассчитываем конструкцию по условию сдвигоустойчивости в песчаном слое основания.
Действующие в песчаном слое основания активное напряжение сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
Нижнему слою модели присваиваем следующие характеристики: (при МПа (табл. П.3.32)); j = 27° и с = 0,004 МПа (табл. П.2.6).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и и при j = 27° с помощью номограммы (рис. 3.2) находим удельное активное напряжение сдвига: = 0,018 МПа.
По формуле (3.13): Т = 0,014×0,6 = 0,0084 МПа.
Предельное активное напряжение сдвига Тпр в песчаном слое определяем по формуле (3.14), где СN = 0,002 МПа, Кд = 4,0.
Zоп = 4 + 8 + 14 + 26 = 52 см.
jст = 32° (табл. 2.6)
ycp = 0,002 кг/см2
Тпр = 0,002×4 + 0,1×0,002×52×tg 32° = 0,0145 МПа,
где 0,1 - коэффициент для перевода в МПа
, что больше
Следовательно, условие по сдвигоустойчивости в песчаном слое основания выполнено.
6. Рассчитываем конструкцию на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.
Расчет выполняем в следующем порядке:
а) Приводим конструкцию к двухслойной модели, где нижний слой модели - часть конструкции, расположенная ниже пакета асфальтобетонных слоев, т.е. щебеночное основание и грунт рабочего слоя. Модуль упругости нижнего слоя определяем по номограмме рис. 3.1.
Ен =148 МПа
К верхнему слою относят все асфальтобетонные слои.
Модуль упругости верхнего слоя устанавливаем по формуле (3.12)
МПа.
б) По отношениям и по номограмме рис. 3.4 определяем = 1,05 МПа.
Расчетное растягивающее напряжение вычисляем по формуле (3.16):
= 1,050 0,6 0,85 = 0,64 МПа.
в) Вычисляем предельное растягивающее напряжение по формуле (3.17):
при Ro = 5,65 МПа для нижнего слоя асфальтобетонного пакета (табл. П.3.1)
vR = 0,10 (табл. П.4.1); t = 1,71 (табл. П.4.2)
- (формула 3.18)
a = 6,3; m = 4 (табл. П.3.1); SNp = 2710379 авт.
k2 = 0,85 (табл. 3.6)
RN = 5,65×0,155×0,85(1 - 0,1×1,71) = 0,62
г) = 0,97, что меньше, чем = 1,0 (табл. 3.1).
Вывод: конструкция не удовлетворяет критерию прочности по сопротивлению монолитных слоев разрушению от растяжения при изгибе.
Проверка на морозоустойчивость
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности lод(i), Вт/(мК) |
Плотный асфальтобетон |
0,04 |
1,40 |
Пористый асфальтобетон |
0,08 |
1,25 |
Высокопористый асфальтобетон |
0,14 |
1,05 |
Укрепленная щебеночно-гравийно-песчаная смесь |
0,26 |
2,02 |
Песок средней крупности |
0,20 |
lср = (lм + lт)/2; (2,44 + 1,91):2 = 2,18* |
*Поскольку в период промерзания дорожной конструкции песок находится сначала в талом, а затем в мерзлом состоянии, в расчет вводят среднеарифметическое значение коэффициентов теплопроводности lт и lм.
1. В соответствии с п.п. 1-2 Проверки на морозоустойчивость Примера 1 определяем глубину промерзания zпp = 2,0 м и для толщины дорожной одежды 0,7 м величину пучения для осредненных условий lпуч.ср = 7,0 см.
2. По таблицам и графикам находим коэффициенты Кугв = 0,67 (рис. 4.1); Кпл = 1,2 (табл. 4.4); Кгр = 1,1 (рис. 4.5); Kнагр = 0,92 (рис. 4.2); Квл = 1,1 (рис. 4.6).
По формуле 4.2 находим величину пучения для данной конструкции
lпуч = lпуч.ср×Кугв×Кпл×Кгр×Кнагр×Квл = 7,0×0,67×1,2×1,1 0,92×1,1 = 6,26 (см).
3. Поскольку для данного типа дорожной одежды допустимая величина морозного пучения согласно табл. 4.3 составляет 4 см, следует выполнить расчет морозозащитного слоя. Предварительно ориентировочно определяем необходимую толщину морозозащитного слоя при допустимой величине морозного пучения lдоп = 4 см.
Для этого определяем величину морозного пучения для осредненных условий lпуч.ср, при которой пучение для данной конструкции не превышает 4 см
lпуч.ср = lдоп/Кугв×Кпл×Кгр×Кнагр×Квл = 4:(0,67×1,2×1,1 0,92×1,1) = 4,47 (см).
По номограмме рис. 4.3 определяем необходимую толщину дорожной одежды hод = 1,03 м, отсюда толщина морозозащитного слоя hмрз = 1,03 - 0,70 = 0,33 м.
Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1). Задаемся hмрз = 0,30 м.
Для использования в морозозащитном слое назначаем среднезернистый песок.
3. По формуле (4.7) определяем термическое сопротивление дорожной одежды без морозозащитного слоя
= 0,04 : 1,40 + 0,08 : 1,25 + 0,14 : 1,05 + 0,26 : 2,02 + 0,20 : 2,18000 = 0,45 (м2 К/Вт).
4. По карте изолиний рис. 4.5 определяем номер изолинии - V;
5. По табл. 4.9 находим Спуч = 1,35;
6. По табл. 4.10 при общей толщине дорожной одежды hод = 1,05 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,645;
7. Вычисляем отношение lдоп/(Спуч.×Ср) = 4/(1,35×0,64) = 4,59 см;
8. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпp = 0,78 (м2К/Вт);
9. По табл. 4.7 Код = 0,90; Кувл = 1,0 (п. 4.11); d = 0,95;
По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,67 (м2К/Вт);
10. По формуле (4.6) hмз = (Rод(тр) - Rод(о))×lмрз = (0,67 - 0,45)×2,18 = 0,48 м.
11. Разница между полученным и заданным значениями hмз превышает 5 см. Расчет продолжаем, задавшись hмз = 0,50 см.
12. По табл. 4.10 при общей толщине дорожной одежды hод = 1,20 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,63;
13. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,63) = 4,7 см;
14. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпр = 0,81 (м2К/Вт);
15. По табл. 4.7 Код = 0,99; Кувл = 1,0 (п. 4.11); d = 0,95;
16. По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,69 (м2К/Вт);
17. По формуле (4.5) hмз = (Rод(тр) - Rод(о))×lмрз = (0,69 - 0,45)×2,18 = 0,53 м.
18. Разница между полученным и заданным значениями hмз не превышает 5 см. Принимаем hмз = 0,50 см.
Пример 5.
Требуется запроектировать дорожную одежду при следующих исходных данных:
- дорога располагается во II дорожно-климатической зоне, в Московской области;
- категория автомобильной дороги - III;
- заданный срок службы дорожной одежды - Тсл = 15 лет;
- приведенная к нагрузке типа А (Приложение 1 табл. П.1.1) интенсивность движения на конец срока службы Np = 900 авт/сут; приращение интенсивности q = 1,04;
- грунт рабочего слоя земляного полотна - супесь пылеватая с расчетной влажностью 0,7 Wт, которая относится к сильнопучинистым грунтам;
- материал для основания - гравийная смесь.
- высота насыпи составляет 1,5 м;
- схема увлажнения рабочего слоя земляного полотна - III.
- глубина залегания грунтовых вод - 0,6 м.
1. Вычисляем суммарное количество приложений за срок службы:
Для расчета по допускаемому упругому прогибу и условию сдвигоустойчивости по формуле (3.6)
, где Кс = 20 (Приложение 6 табл. П.6.6).
С учетом поправки в примечании табл. П.6.1 Трдг = 112.
Кn = 1,49 (табл. 3.3)
авт.
2. Предварительно назначаем конструкцию и расчетные значения расчетных параметров:
- для расчета по допускаемому упругому прогибу (Приложение 2 табл. П.2.5, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.8);
- для расчета по условию сдвигоустойчивости (Приложение 2 табл. П.2.4, Приложение 3 табл. П.3.2 и Приложение 3 табл. П.3.8);
- для расчета на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе (Приложение 3 табл. П.3.1 и Приложение 3 табл. П.3.8).
№ |
Материал слоя |
h слоя, см |
Расчет по допустимому упруг. прогибу, Е, МПа |
Расчет по усл. сдвигоустойчивости, Е, Па |
Расчет на растяжение при изгибе |
|||
Е, МПа |
Ro, МПа |
a |
m |
|||||
1. |
Асфальтобетон плотный на БНД марки 60/90 |
4 |
3200 |
1800 |
4500 |
9,80 |
5,2 |
5,5 |
2 |
Асфальтобетон пористый на БНД марки 60/90 |
4 |
2000 |
1200 |
2800 |
8,0 |
5,9 |
4,3 |
3. |
Асфальтобетон высокопористый на БНД марки 60/90 |
14 |
2000 |
1200 |
2100 |
5,65 |
6,3 |
4,0 |
4. |
Гравийная смесь |
48 |
205 |
205 |
205 |
- |
- |
- |
5. |
Супесь пылеватая Wп = 0,7Wт |
- |
46 |
46 |
46 |
- |
- |
- |
3. Расчет по допускаемому упругому прогибу ведем послойно, начиная с подстилающего грунта по номограмме рис. 3.1:
1)
по Приложению 1 табл. П.1.1 р = 0,6 МПа, D = 37 см
МПа
2)
МПа
3)
МПа
4)
МПа
Требуемый модуль упругости определяем по формуле (3.9):
Етр = 98,65[lg(SNp) - 3,55] = 98,65[lg 1124607 - 3,55] = 247 МПа
Определяют коэффициент прочности по упругому прогибу:
Требуемый минимальный коэффициент прочности для расчета по допускаемому упругому прогибу 1,17 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет условию прочности по допускаемому упругому прогибу.
4. Рассчитываем конструкцию по условию сдвигоустойчивости в грунте.
Действующие в грунте активные напряжения сдвига вычисляем по формуле (3.13):
Т =
Для определения предварительно назначенную дорожную конструкцию приводим к двухслойной расчетной модели.
В качестве нижнего слоя модели принимаем грунт (супесь пылеватая) со следующими характеристиками: (при Wр = 0,7Wт и SNp = 1 214 250 авт.) Ен = 46 МПа (табл. П.2.5); j = 12° и с = 0,004 МПа (табл. П.2.4).
Модуль упругости верхнего слоя модели вычисляем по формуле (3.12), где значения модулей упругости материалов, содержащих органическое вяжущее, назначаем по табл. П.3.2 при расчетной температуре +20 °С (табл. 3.5).
МПа.
По отношениям и , и при j = 12° с помощью номограммы (рис. 3.3) находим удельное активное напряжение сдвига: = 0,0153 МПа.
Таким образом: Т = 0,053×0,6 = 0,0092 МПа.
Предельное активное напряжение сдвига Тпр в песчаном слое определяем по формуле (3.14), где СN = 0,004 МПа, Кд = 1,0.
Zоп = 4 + 8 + 14 + 48 = 70 см.
jст = 35° (табл. 2.4)
ycp = 0,002 кг/см2
Тпр = 0,004 + 0,1×0,002×70×tg 35° = 0,0138 МПа,
где 0,1 - коэффициент для перевода в МПа
, что больше (табл. 3.1).
5. Рассчитываем конструкцию на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.
Расчет выполняем в следующем порядке:
а) Приводим конструкцию к двухслойной модели, где нижний слой модели - часть конструкции, расположенная ниже пакета асфальтобетонных слоев, т.е. щебеночное основание и грунт рабочего слоя. Модуль упругости нижнего слоя определяем по номограмме рис. 3.1.
Ен = 122 МПа
К верхнему слою относят все асфальтобетонные слои.
Модуль упругости верхнего слоя устанавливаем по формуле (3.12)
МПа.
Модули упругости асфальтобетонных слоев назначаем по табл. П.3.1.
б) По отношениям и по номограмме рис. 3.4 определяем = 1,98 МПа.
Расчетное растягивающее напряжение вычисляем по формуле (3.16):
= 1,38 0,6 0,85 = 0,70 МПа.
в) Вычисляем предельное растягивающее напряжение по формуле (3.17):
при Ro = 5,65 МПа для нижнего слоя асфальтобетонного пакета (табл. П.3.1)
vR = 0,10 (табл. П.4.1)
t = 1,71 (табл. П.4.2)
- (формула 3.18)
m = 4; a = 6,3 (табл. П.3.1)
SNp = 1124607 авт.
k2 = 0,85 (табл. 3.6)
RN = 5,65×0,193×0,85(1 - 0,1×1,71) = 0,77
г) = 1,1, что больше, чем = 1,0 (табл. 3.1).
Следовательно, выбранная конструкция удовлетворяет всем критериям прочности.
Проверка на морозоустойчивость
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности lод(i), Вт/(мК) |
Плотный асфальтобетон |
0,04 |
1,40 |
Пористый асфальтобетон |
0,04 |
1,25 |
Высокопористый асфальтобетон |
0,14 |
1,05 |
Гравийная смесь |
0,48 |
2,10 |
1. В соответствии с п.п. 1-2 Проверки на морозоустойчивость Примера 1 определяем глубину промерзания zпp = 2,0 м и для толщины дорожной одежды 0,7 м величину пучения для осредненных условий lпуч.ср = 7,0 см.
2. По таблицам и графикам находим коэффициенты Кугв = 0,67 (рис. 4.1); Кпл = 1,2 (табл. 4.4); Кгр = 1,1 (рис. 4.5); Кнагр = 0,92 (рис. 4.2); Квл = 1,1 (рис. 4.6).
По формуле 4.2 находим величину пучения для данной конструкции
lпуч = lпуч(ср)×Кугв×Кпл×Кгр×Кнагр×Квл = 7,0×0,67×1,2×1,1×0,92×1,1 = 6,26 (см).
3. Поскольку для данного типа дорожной одежды допустимая величина морозного пучения согласно табл. 4.3 составляет 4 см, следует назначить морозозащитный слой и выполнить расчет его толщины. Предварительно ориентировочно определяем необходимую толщину морозозащитного слоя при допустимой величине морозного пучения lдоп = 4 см.
Для этого определяем величину морозного пучения для осредненных условий lпуч(ср), при которой морозное пучение для данной конструкции не превышает 4 см
lпуч.ср = lдоп/Кугв×Кпл×Кгр×Кнагр×Квл = 4:(0,67×1,2×1,1 0,92×1,1) = 4,47 (см).
По номограмме рис. 4.3 определяем требуемую толщину дорожной одежды hод = 1,03 » 1,05 м, отсюда толщина морозозащитного слоя hмpт = 1,05 - 0,70 = 0,35 м.
4. Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1) и задаемся толщиной морозозащитного слоя hмрз = 0,35 м.
Для использования в морозозащитном слое назначаем крупнозернистый песок с коэффициентами теплопроводности в талом и мерзлом состояниях соответственно lг = 1,74 Вт/(мК) и lм = 2,32 Вт/(мК)
lср = (1,74 + 2,32)/2 = 2,03 Вт/(мК).
5. По формуле (4.7) определяем термическое сопротивление дорожной одежды без морозозащитного слоя
= 0,04 : 1,40 + 0,04 : 1,25 + 0,14 : 1,05 + 0,48 : 2,10 = 0,45 (м2К/Вт).
6. По карте изолиний рис. 4.5 определяем номер изолинии - V;
7. По табл. 4.9 находим Спуч = 1,35;
8. По табл. 4.10 при общей толщине дорожной одежды hод = 1,05 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,645;
9. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,64) = 4,59 см;
10. По номограмме рис. 4.6 определяем методом интерполяции приведенное термическое сопротивление Rпp = 0,78 (м2 К/Вт);
11. По табл. 4.7 Код = 0,90; Кувл = 1,0 (п. 4.11); d = 0,95;
По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,67 (м2 К/Вт);
12. По формуле (4.5) hмз = (Rод(тр) - Rод(о))×lмрз = (0,67 - 0,42)×2,03 = 0,51 м;
13. Разница между полученным и заданным значениями hмз превышает 5 см. Расчет продолжаем, задавшись hмз = 0,50 м.
14. По табл. 4.10 при общей толщине дорожной одежды hод = 1,20 м для сильнопучинистого грунта при помощи интерполяции определяем Ср = 0,63;
15. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,61) = 4,7 см;
16. По номограмме рис. 4.6 определяем методом интерполяции Rпp = 0,81 (м2 К/Вт);
17. По табл. 4.7 Код = 0,95; Кувл = 1,0 (п. 4.11); d = 0,95;
18. По формуле (4.7) Rод(тр) = Rпр×Код×Кувл×d = 0,69 (м2 К/Вт);
19. По формуле (4.5) hмз = (Rод(тр) - Rод(о))×lмрз = (0,69 - 0,42)×2,03 = 0,54 м.
Разница между полученным и заданным значениями hмз не превышает 5 см. Принимаем hмз = 0,50 м.
Пример 6.
Выполнить проверку конструкции на морозоустойчивость и, если потребуется, определить толщину морозозащитного слоя на участке дороги, проходящей в районе г. Москвы. Проверка дорожной одежды на прочность выполнена.
Исходные данные.
1. Дорога III технической категории.
2. Участок дороги расположен во II2 дорожно-климатической зоне, в Московской области.
3. Высота насыпи составляет 1,5 м, толщина дорожной одежды - 0,70 м, толщины слоев приведены в таблице.
4. Схема увлажнения рабочего слоя земляного полотна - III.
Глубина залегания грунтовых вод - 0,5 м.
5. Грунт насыпи и естественного основания - суглинок тяжелый пылеватый, который относится к сильнопучинистым грунтам.
7. Влажность грунта насыпи составляет 0,7Wт.
8. Срок службы дорожной одежды между капитальными ремонтами - 10 лет.
Расчет.
Материал |
Толщина слоя hод(i), м |
Коэффициент теплопроводности -lод(i), Вт/(мК) |
Плотный асфальтобетон |
0,05 |
1,40 |
Пористый асфальтобетон |
0,15 |
1,25 |
Гранитный щебень, обработанный вязким битумом |
0,30 |
1,28 |
Крупнозернистый песок |
0,20 |
2,03* |
*Поскольку в период промерзания дорожной конструкции песок находится сначала в талом, а затем в мерзлом состоянии, в расчет вводят среднеарифметическое значение коэффициентов теплопроводности lг и lм.
1. По карте рис. 4.4 определяем среднюю глубину промерзания zпp(cp) для условий г. Москвы, умножаем ее на поправочный коэффициент и находим таким образом глубину промерзания дорожной конструкции zпp:
Zпp = 1,40×1,38 = 1,93 м » 2,00 м.
2. Для глубины промерзания 2,00 м по номограмме (рис. 4.3) по кривой для сильнопучинистых грунтов (группа IV) при толщине дорожной одежды 0,7 м определяем величину морозного пучения для осредненных условий lпуч.ср = 7,2 см.
По таблицам и графикам находим коэффициенты:
Кугв = 0,7 (рис. 4.1); Кпл = 1,2 (табл. 4.4); Кгр = 1,3 (рис. 4.5); Кнагр = 0,92 (рис. 4.2); Квл = 1,3 (рис. 4.6).
По формуле 4.2 определяем величину морозного пучения для данной конструкции:
lпуч = lпуч.ср×Кугв×Кпл×Кгр×Кнагр×Квл = 7,2×0, 7×1,2×1,3×0,92×1,1 = 7,9 (см).
Поскольку для данного типа дорожных одежд допустимая величина пучения согласно табл. 4.3 составляет 4 см, следует выполнить расчет морозозащитного слоя.
3. Предварительно ориентировочно определяем необходимую толщину морозозащитного слоя при допустимой величине пучения lдоп. = 4 см. Для этого по формуле (4.3) определяем величину морозного пучения для осредненных условий, при которой пучение для данной конструкции не превышает 4 см.
lпуч.ср = lдоп/Кугв×Кпл×Кгр×Кнагр×Квл = 4/(0, 7×1,2×1,3 0,92×1,1) = 3,62 (см).
По номограмме (рис. 4.3) при Zп = 2,00 м определяем толщину дорожной одежды, включая морозозащитный слой, hод = 1,30 м, отсюда толщина морозозащитного слоя 1,30 - 0,70 = 0,60 м.
Для уточнения требуемой толщины морозозащитного слоя выполняем расчеты с учетом теплофизических характеристик отдельных слоев (Табл. П.5.1). Задаемся толщиной морозозащитного слоя 0,60 м.
Для использования в морозозащитном слое назначаем крупнозернистый песок с коэффициентами теплопроводности в талом и мерзлом состояниях соответственно lт = 1,74 Вт/(мК) и lм = 2,32 Вт/(мК)
lср = (1,74 + 2,32)/2 = 2,03 Вт/(мК)
= 0,05 : 1,40 + 0,15 : 1,25 + 0,30 : 1,28 + 0,20 : 2,03 = 0,48 (м2×К/Вт).
5. По карте изолиний рис. 4.5 определяем номер изолинии, соответствующий месту положения трассы - V. По табл. 4.9 для сильнопучинистых грунтов по номеру изолинии V находим Спуч = 1,35.
При величине hод = 1,30 м расстояние от низа дорожной одежды до залегания грунтовых вод Ну = 0,7 м. По табл. 4.10 при hод = 1,3 м для hпр(доп) в интервале 0-100 методом интерполяции находим Ср = 0,72.
6. Вычисляем отношение lдоп/(Спуч×Ср) = 4/(1,35×0,72) = 4,12 см.
7. По номограмме рис. 4.6 определяем методом интерполяции определяем приведенное термическое сопротивление Rпр = 0,91 м2 К/Вт.
8. По табл. 4.7 Код = 0,90. В соответствии с п. 4.10 Кувл = 1,0; d = 0,95.
9. По формуле (4.8) Rод(тр) = Rпр×Код×Кувл×d = 0,91×0,90×1,0×0,95 = 0,78 (м2 К/Вт);
10. По формуле (4.6) hмз = (Rод(тр) - Rод(о))×lмрз = (0,78 - 0,48)×2,03 = 0,61 м.
Разница между полученным и заданным значениями hмз превышает 5 см. Принимаем hмз = 0,60 см.
Пример 7.
Определить толщину теплоизолирующего слоя из пенопласта для указанной дороги в районе г. Москвы. Исходные данные те же, что и в предыдущем примере.
Расчет.
1. В соответствии с п. 4 предыдущего примера Rод(о) = 0,48 м2 К/Вт.
2. По табл. 4.11 для сильнопучинистых грунтов находим Сп = 1,5.
При толщине дорожной одежды hод = 0,70 м расстояние от низа дорожной одежды до УГВ Ну составит 1,3 м.
3. Принимаем допустимую глубину промерзания hпр(доп) 0-50 и по табл. 4.10 методом интерполяции между hод = 0,50 м и hод = 1,0 определяем Ср = 0,81.
4. Находим lдоп/Сп×Ср = 4:(1,5×0,81) = 3,3. При Ну = 1,3 м по номограмме рис. 4.5 получаем значение hпр(доп) = 82 см.
5. Поскольку значение Ср было определено для интервала hпр(доп) 0-50, возвращаемся к табл. 4.10 и находим при hпр(доп) = 0-1,0 м и hод = 0,70 м Ср = 0,78. Для этих значений по номограмме рис. 4.6 определяем Rпр = 0,86 в соответствии с п. 8 и п. 9 предыдущего примера.
Rод(тр) = 0,86×0,90×1,0×0,95 = 0,74 м2 К/Вт.
6. По графику рис. 4.7 при Rод(тр) = 0,74 м2 К/Вт и Rод(тр) = 0,47 м2 К/Вт находим hп = 1,5 см. Учитывая минимальные размеры плиты пенопласта, принимаем толщину теплоизолирующего слоя 3 см.
Пример 8
Исходные данные
1. Участок дороги III технической категории расположен в Московской области.
2. Высота насыпи составляет 1,5 м, толщина дорожной одежды, включая морозозащитный слой - 1,10 м.
3. Толщина морозозащитного слоя из мелкозернистого песка 0,50 м, коэффициент фильтрации Кф = 2,1 м/сут, пористость n = 0,32.
4. Схема увлажнения рабочего слоя земляного полотна - III.
5. Грунт насыпи и естественного основания - супесь пылеватая.
6. Уклон дренирующего слоя i = 0,03.
Требуется оценить возможность работы морозозащитного слоя как дренирующего.
Расчет.
1. Поскольку коэффициент фильтрации песка достаточно высок, дренирующий слой рассчитывают на осушение.
По табл. 5.3 находят удельный приток воды во II ДКЗ для 3-ей схемы увлажнения q = 3,5 л/м2 сут. По табл. 5.4. Кп = 1,6; Кг = 1,0. Ввиду отсутствия переломов продольного профиля на участке, а также специальных мероприятий по уменьшению притока, Квог = 1; Кр = 1.
2. По формуле (5.2) расчетный приток воды в дренирующий слой составляет qp = q×Kп×Кг:1000 = 3,5×1,6×1,0:1000 = 0,0056 м3/м2сут.
3. Для расчета используют номограмму рис. 5.1.
Для двускатного профиля
q¢ = qpB/2 =0,0056×7:2 = 0,0196 м3/м2;
q¢/Кф = 0,0196:2,1 = 0,0093;
По номограмме для отношения qp/Кф находят величину 3,5hнас/L = 0,07,
где L - путь фильтрации, для двускатного профиля - половина длины дренирующего слоя; L = В/2 + а +d;
В - ширина проезжей части;
а - ширина обочины;
d - средняя длина участка дренирующего слоя, расположенная в откосной части земляного полотна, равная сумме толщины дорожной одежды и половине толщины дренирующего слоя, умноженной на заложение откоса;
L = 7/2 + 2,5 + (0,79 + 0,60/2)×1,5 = 9,6 м;
отсюда hнас = 0,19 м.
Тогда полная толщина дренирующего слоя
hп = hзaп + hнаc = 0,20 + 0,19 = 0,39 м.
4. Проверку на временное поглощение воды дренирующим слоем выполняют по формуле (5.4). По табл. 5.6 jзим = 0,45; Тзап = 6 сут.
hp = (qp×Тзап/n + 0,3hзап):(1 - jзим) = (0,0056×6:0,27 + 0,3×0,20):(1 - 0,5) = 0,3 м.
Расчет окончен.
Пример 9.
Исходные данные.
1. Участок дороги III технической категории расположен в Московской области.
2. Высота насыпи составляет 1,5 м, толщина дорожной одежды - 0,79 м.
3. Толщина морозозащитного слоя из среднезернистого песка 0,60 м, коэффициент фильтрации Кф = 1,2 м/сут, пористость n = 0,34.
4. Схема увлажнения рабочего слоя земляного полотна - III.
5. Грунт насыпи и естественного основания - супесь пылеватая.
6. Уклон дренирующего слоя i = 0,03.
Требуется оценить возможность работы морозозащитного слоя как дренирующего.
Расчет.
Расчет толщины дренирующего слоя выполняют на осушение.
1. В соответствии с п.п. 1-3 предыдущего примера qр = 0,0056 м3/м2сут
q¢ = qpB/2 =0,0056×7:2 = 0,0196 м3/м2;
q¢/Кф = 0,0196:2,1 = 0,0093;
2. По номограмме рис. 5.1 определяют 3,5hнас/L = 0,28; L = 9,6 м (см. п. 3 предыдущего примера), отсюда hнас = 0,77
hп = hзaп + hнаc = 0,20 + 0,77 = 0,97 м.
Поскольку требуемая толщина дренирующего слоя превышает заданную, следует применить конструкцию с прикромочным дренажем. Примем, что продольная дрена расположена под серединой обочины. В этом случае путь фильтрации L = В/2 + а/2 = 4,75 м.
3. По номограмме рис. 5.4 по величине qp/Кф = 0,0056/1,2 = 0,0047 находят 2 значения hп: для L = 5,0 м и L = 3,5 м. По методу интерполяции hп = 0,40 м.
4. Проверку на временное поглощение воды дренирующим слоем выполняют по формуле (5.4). По табл. 5.6 jзим = 0,4; Тзап = 6 сут.
hp = (qp×Тзап/n + 0,3hзап):(1 - jзим) = (0,0056×6:0,27 + 0,3×0,20):(1 - 0,4) = 0,31 м.
Расчет окончен.
Пример 10
Исходные данные
1. Участок дороги III технической категории расположен в Московской области.
2. Высота насыпи составляет 1,5 м, толщина дорожной одежды - 0,70 м.
3. Толщина морозозащитного слоя из среднезернистого песка 0,70 м, коэффициент фильтрации Кф = 0,49 м/сут, пористость n = 0,28.
4. Схема увлажнения рабочего слоя земляного полотна - III.
5. Грунт насыпи и естественного основания - супесь пылеватая.
6. Уклон дренирующего слоя i = 0,03.
Требуется оценить возможность работы морозозащитного слоя как дренирующего.
Расчет
Ввиду того, что коэффициент фильтрации грунта достаточно низкий, дренирующий слой рассчитывают на поглощение.
По табл. 5.6 для n = 0,28 jзим = 0,55.
По табл. 5.3 для условий II дорожно-климатической зоны и 3-й схемы увлажнения Qp = 60 л/м2. По формуле 5.3:
hп = (Qp/1000n + 0,3hзап):(1 - jзим) = [60:(1000×0,28) + 0,3×0,15]:(1 - 0,55) = 0,58 м.
Расчет окончен.
Пример 11
Исходные данные.
1. Участок дороги III технической категории расположен в Московской области.
2. Высота насыпи составляет 1,5 м, толщина дорожной одежды совместно с дренирующим (морозозащитным) слоем - 1,10 м.
3. Конструкция дорожной одежды
Материал |
Толщина слоя h, м |
Плотный асфальтобетон |
0,04 |
Пористый асфальтобетон |
0,08 |
Высокопористый асфальтобетон |
0,14 |
Укрепленная щебеночно-гравийно-песчаная смесь |
0,26 |
Песок средней крупности |
0,70 |
4. Конструкция дренирующего слоя - дренирующий слой из среднезернистого песка под проезжей частью с трубчатыми дренами.
5. Грунт насыпи и естественного основания - супесь пылеватая.
6. Схема увлажнения рабочего слоя земляного полотна - III.
Требуется определить расчетную влажность грунта насыпи без испытаний,
Расчет
Расчетную влажность определяют по формуле П.2.1
Wp = (таб + D1 - D2)(1 + 0,1t) - D3
По табл. П.2.1 для условий II дорожно-климатической подзоны, 3-й схемы увлажнения определяем таб = 0,72.
По табл. П.2.2 поправка D1 = 0.
По табл. П.2.3 поправка D2 = 0,09 (за счет укрепленного слоя основания из щебеночно-гравийно-песчаной смеси - 0,04 и за счет дренажа с продольными трубчатыми дренами - 0,05).
По графику рис. П.2.1 поправка на влияние суммарной толщины стабильных слоев дорожной одежды D3 = 0,003.
По табл. П.4.2 для уровня надежности 0,95 коэффициент нормированного отклонения t = 1,71.
Wp = (0,72 - 0,09)(1 + 1,71) - 0,003 = 0,699 » 0,7 (доли от Wт).
Расчет окончен.
Исходные данные
Автомобильная дорога II категории расположена в регионе Нижнего Новгорода.
Грунт земляного полотна - супесь тяжелая пылеватая.
Глубина выемки составляет 100 см.
Расчетный уровень грунтовых вод - на глубине 120 см от поверхности земляного полотна.
Экспериментально установленное значение коэффициента влагопроводности Квл = 5 см2/ч.
Начальная влажность Wo = 0,12, предел текучести Wт = 0,18, плотность сухого грунта r = 1,66 г/см2.
Суммарная толщина дорожной одежды, имеющей асфальтобетонное покрытие, равна 60 см.
Требуется определить среднюю осеннюю влажность Woccp, среднюю весеннюю влажность Wвeccp и морозное пучение hпуч.
Расчет.
1. Из табл. П.7.2 находим для Нижнего Новгорода tвл = 1440 ч., tпp = 182 суток, s = 26,21.
2. Вычисляем по зависимости (П.7.6) значение критерия осеннего влагонакопления:
Fон = Квл×tвл/h2 = 5×1440/1202 = 0,50.
3. Определяем параметр hАВ = hА/hВ. В соответствии с (П.7.7) hА = 160 - 60 = 100 см. Тогда hАВ = 100/120 = 0,83.
4. По графику рис. П.7.2 находим DWотн = 0,73.
5. Используя (П.7.5) и приняв D = 2,68, получим Wпв = 1/1,66 - 1/2,68 = 0,23.
6. По зависимости (П.7.4) находим Woccp = 0,12 + 0,73×(0,23 - 0,12) = 0,20.
7. По зависимости (П.7.12) вычисляем характеристику скорости промерзания
a = 1,24 + 0,72×lns - 0,05×hs = 1,24 + 0,72×ln 26,21 = 3,59.
8. Используя (П.7.9), вычисляем критерий зимнего влагонакопления Z:
Z = 3,59/(2×) = 0,80
9. По графику рис. П.7.3. находим С = 1,50.
10. Для супеси тяжелой пылеватой из табл. П.7.1 находим Wh = 0,09 и Wиз = 0,06.
11. С помощью (П.7.8) находим Wвeccp = 0,09 + (0,20 - 0,09)×1,50 = 0,26.
12. По зависимости (П.7.15) находим глубину промерзания- грунта hпp:
hпр = a× см.
Так как hпр > hкр, то принимаем в соответствии с данными таблицы П.7.1. hпp = 130 см.
13. Вычисляем по формуле (П.7.14) вероятную величину морозного пучения hпуч.
14. hпуч = 130×(1,66/1,0)×[1,09×(0,26 - 0,06)×(0,23 - 0,06)] = 10,4 см.
Поскольку полученная величина морозного пучения превышает допустимую для асфальтобетонного покрытия (4 см), намечаем в составе дорожной одежды слой из пеноплэкса толщиной 8 см.
Выполняем весь вышеприведенный цикл расчетов с учетом данного мероприятия, сохранив нумерацию соответствующих позиций расчетов.
3. Уточняем значение параметра hА = 160 - (60 + 8) = 92 см, hАВ = 92/120 = 0,77.
4. По графику рис. П.7.2 находим DWотн = 0,72.
6. Находим Woccp = 0,12 + 0,72×(0,23 - 0,12) = 0,20.
7. По зависимости (П.7.12) вычислим характеристику скорости промерзания
a = 1,24 + 0,72 lns - 0,05×8 = 3,19.
8. Используя (П.7.9), вычислим критерий зимнего влагонакопления Z:
Z = 3,19/(2×) = 0,71
9. По графику рис. П.7.3 находим С = 1,57.
11. С помощью (П.7.8) находим Wвеccp = 0,09 + (0,20 - 0,09)×1,57 = 0,26.
12. По зависимости (П.7.16) находим глубину промерзания грунта hпр:
hпр = 151 - (13,93 - 0,0067×26,21)×8 = 41 см.
13. Вычисляем по формуле (П.7.14) вероятную величину морозного пучения hпуч:
hпуч = 41×(1,66/1,0)×[1,09×(0,26 - 0,6) - (0,23 - 0,6)] = 3,3 см.
Расчет окончен.
Руководители работ и ответственные исполнители: к.т.н. В.М. Юмашев и д.т.н. В.Д. Казарновский (Союздорнии).
В подготовке текста ОДН участвовали сотрудники Союздорнии: д.т.н. В.И. Рувинский и к.т.н. Е.С. Пшеничникова (вопросы расчета на морозоустойчивость и осушение); к.т.н. И.В. Лейтланд и к.т.н. А.Е. Мерзликин (вопросы расчета на прочность); к.т.н. В.С. Исаев, к.т.н. Г.Н. Кирюхин, инж. В.А. Зельманович, инж. М.Л. Попов (расчетные характеристики дорожно-строительных материалов).
Кроме материалов Союздорнии непосредственно использованы в тексте материалы, полученные от организаций-соисполнителей:
С.-Петербургского филиала Союздорнии (д.т.н. Ю.М. Васильев, к.т.н. П.И. Теляев, к.т.н. А.О. Салль, к.т.н. А.М. Симановский, к.т.н. Т.Н. Полтаранова, инж. В.А. Мазуров) - вопросы расчета дорожной одежды на прочность по критериям сдвига и растяжения при изгибе и расчет на морозоустойчивость;
Омского филиала Союздорнии (к.т.н. А.С. Пилипенко, к.т.н. Белоусов) - расчетные характеристики грунтов с учетом многократной нагрузки;
МАДИ (ТУ) (д.т.н. А.П. Васильев, д.т.н. В.П. Носов, д.т.н. Ю.М. Яковлев, к.т.н. М.С. Коганзон, к.т.н. В.К. Апестин, к.т.н. П.П. Петрович, к.т.н. М.Г. Горячев, инж. Е.В. Жустарева) - вопросы расчета по упругому прогибу;
ГП «Росдорнии» (д.т.н. В.А. Кретов, к.т.н. А.И. Дудаков, к.т.н. В.М. Ольховиков, д.т.н. А.В. Руденский, к.т.н. Г.С. Бахрах, инж. А.М. Стрижевский) - расчетные характеристики дорожно-строительных материалов и воздействие от транспортной нагрузки;
Военной академии тыла и транспорта (д.т.н. И.А. Золотарь) - расчет на морозоустойчивость.
Наряду с этим принимались во внимание замечания и предложения, полученные от Сибирской государственной автомобильно-дорожной академии (СибАДИ) (д.т.н. А.В. Смирнов, д.т.н. В.Н. Шестаков, к.т.н. А.А. Малышев, к.т.н. А.Г. Малофеев, к.т.н. В.В. Сиортюк, инж. В.В. Сычев, инж. А.С. Александров, инж. И.А. Брежнец).
Учитывались также опубликованные материалы исследований, выполненных в период 1985-95 гг. под руководством проф. В.А. Семенова (учет статистического характера показателей механических свойств) и проф. А.Я. Тулаева (расчет на осушение), под руководством проф. Б.С. Радовского (вопросы усталостного сопротивления асфальтобетонных слоев), а также опубликованные материалы исследований, выполненных под руководством к.т.н. Ю.В. Бутлицкого и проф. Б.Б. Каримова (по особенностям водно-теплового режима и расчетным параметрам дорожных одежд в V дорожно-климатической зоне и в горной местности).
СОДЕРЖАНИЕ
Расположен в: |
---|
Источник информации: https://internet-law.ru/stroyka/text/8740
На эту страницу сайта можно сделать ссылку:
На правах рекламы:
© Антон Серго, 1998-2024.
|
Разработка сайта |
|